The Demazure character formula and Demazure modules and Demazure conjecture are named after Demazure, who wrote about them in 1974.[12] Demazure modules are submodules of a finite-dimensional representation of a semisimple Lie algebra, and the Demazure character formula is an extension of the Weyl character formula to these modules. Demazure's work in this area was marred by a dependence on a false lemma in an earlier paper (also by Demazure); the flaw was pointed out by Victor Kac, and subsequent research clarified the conditions under which the formula remains valid.[13]
Later in his career, Demazure's research emphasis shifted from pure mathematics to more computational problems, involving the application of algebraic geometry to image reconstruction problems in computer vision.[14] The Kruppa–Demazure theorem, stemming from this work, shows that if a scene consisting of five points is viewed from two cameras with unknown positions but known focal lengths then, in general, there will be exactly ten different scenes that could have generated the same two images. Austrian mathematician Erwin Kruppa had many years earlier narrowed the number of possible scenes to eleven, and Demazure provided the first complete solution to the problem.[15]
Books
Schémas en groupes. I: Propriétés générales des schémas en groupes (SGA3, vol. I, with Grothendieck). Lecture Notes in Mathematics 151, Berlin: Springer-Verlag, 1970. MR0274458.
Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux (SGA3, vol. II, with Grothendieck). Lecture Notes in Mathematics 152, Berlin: Springer-Verlag, 1970. MR0274459.
Schémas en groupes. III: Structure des schémas en groupes réductifs (SGA3, vol. III, with Grothendieck). Lecture Notes in Mathematics 153, Berlin: Springer-Verlag, 1970. MR0274460.
Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs (with Pierre Gabriel). Masson, Amsterdam: North Holland, 1970. MR0302656. Partially translated into English by J. Bell as Introduction to Algebraic Geometry and Algebraic Groups, Volume 39 of North-Holland Mathematics Studies, Elsevier, 1980, MR0563524.
Lectures on p-divisible groups. Lecture Notes in Mathematics 302, Berlin: Springer-Verlag, 1972, 1986, ISBN3-540-06092-8. MR0344261, MR0883960.
Bifurcations and catastrophes: Geometry of solutions to nonlinear problems. Universitext, Berlin: Springer-Verlag, 2000. Translated from the French (1989) by David Chillingworth. MR1739190.
Cours d'Algèbre: Primalité. Divisibilité. Codes. Paris: Cassini, 1997, 2008. MR1466448.
^Mashaal, Maurice (2006), Bourbaki: a secret society of mathematicians, American Mathematical Society, ISBN978-0-8218-3967-6. On page 12 he is listed as one of four "key members", on page 105 it states that his active work with Bourbaki ceased around 1985, and on page 122 he is quoted as having "twenty years at Bourbaki".
^Séance plénière du Conseil RégionalArchived 2012-03-28 at the Wayback Machine, 29 November 2010, retrieved 2011-07-27. "Le Conseil Régional du 3 mai 2005 a approuvé la création du Comité Consultatif Régional de Recherche et de Développement Technologique, dénommé Comité ARAGO, auprès du Conseil Régional Languedoc-Roussillon. Le Comité ARAGO, présidé par Michel Demazure, ..."
^Springer, T. A. (1984), "Linear algebraic groups", in Jäger, W.; Moser, J.; Remmert, R. (eds.), Perspectives in Mathematics: Anniversary of Oberwolfach 1984, Basel: Birkhäuser, pp. 455–495, MR0779686. On p. 468, Springer writes "The notion of root datum is due to Demazure."
^Demazure, Michel (1970), "Sous-groupes algébriques de rang maximum du groupe de Cremona", Annales Scientifiques de l'École Normale Supérieure, 3 (4): 507–588, doi:10.24033/asens.1201, MR0284446.
^Sottile, Frank (2014), "Book review: Toric varieties, by David A. Cox, John B. Little, and Henry K. Schenck", Bulletin of the American Mathematical Society, New Series, 51 (3): 505–510, doi:10.1090/S0273-0979-2013-01441-1, MR3196799.
^Demazure, Michel (1974), "Une nouvelle formule des caractères", Bulletin des Sciences Mathématiques, 2e Sér., 98 (3): 163–172, ISSN0007-4497, MR0430001.