Michael E. Taylor. Pseudodifferential operators. Princeton Mathematical Series, 34. Princeton University Press, Princeton, N.J., 1981. xi+452 pp. ISBN0-691-08282-0[7]
Michael E. Taylor. Noncommutative harmonic analysis. Mathematical Surveys and Monographs, 22. American Mathematical Society, Providence, RI, 1986. xvi+328 pp. ISBN0-8218-1523-7[8]
Michael E. Taylor. Pseudodifferential operators and nonlinear PDE. Progress in Mathematics, 100. Birkhäuser Boston, Inc., Boston, MA, 1991. 213 pp. ISBN0-8176-3595-5
Michael E. Taylor. Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials. Mathematical Surveys and Monographs, 81. American Mathematical Society, Providence, RI, 2000. x+257 pp. ISBN0-8218-2633-6
Michael E. Taylor. Measure theory and integration. Graduate Studies in Mathematics, 76. American Mathematical Society, Providence, RI, 2006. xiv+319 pp. ISBN978-0-8218-4180-8, 0-8218-4180-7
Michael E. Taylor. Introduction to differential equations. Pure and Applied Undergraduate Texts, 14. American Mathematical Society, Providence, RI, 2011. 409 pp. ISBN978-0-8218-5271-22nd edition. ISBN978-1-4704-6762-3.[9]
Michael E. Taylor. Partial differential equations I. Basic theory. Second edition. Applied Mathematical Sciences, 115. Springer, New York, 2011. xxii+654 pp. ISBN978-1-4419-7054-1[10]
Michael E. Taylor. Partial differential equations II. Qualitative studies of linear equations. Second edition. Applied Mathematical Sciences, 116. Springer, New York, 2011. xxii+614 pp. ISBN978-1-4419-7051-0
Michael E. Taylor. Partial differential equations III. Nonlinear equations. Second edition. Applied Mathematical Sciences, 117. Springer, New York, 2011. xxii+715 pp. ISBN978-1-4419-7048-0
Michael E. Taylor. Introduction to complex analysis. Graduate Studies in Mathematics, 202. American Mathematical Society, Providence, RI, 2019. xiv+480 pp. ISBN978-1-4704-5286-5[11]
Articles.
Jeffrey Rauch and Michael Taylor. Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24 (1974), 79–86. doi:10.1512/iumj.1975.24.24004
Jeff Cheeger, Mikhail Gromov, and Michael Taylor. Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom. 17 (1982), no. 1, 15–53. doi:10.4310/jdg/1214436699
Dorina Mitrea, Marius Mitrea, and Michael Taylor. Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds. Mem. Amer. Math. Soc. 150 (2001), no. 713, x+120 pp. doi:10.1090/memo/0713
^Lester R. Ford Award in 1986 for discussion, in the American Mathematical Monthly in 1985, of the 2-volume treatise on linear partial differential operators by Lars Hörmander