Meta-waveguide

In photonics, a meta-waveguide is a physical structures that guides electromagnetic waves with engineered functional subwavelength structures.[1] Meta-waveguides are the result of combining the fields of metamaterials and metasurfaces into integrated optics.[2][3] The design of the subwavelength architecture allows exotic waveguiding phenomena to be explored.[3][4]

Meta-waveguides can be classified by waveguide platforms or by design methods.[2] If classified by underlying waveguide platform, engineered subwavelength structures can be classified in combination with dielectric waveguides, optical fibers, or plasmonic waveguides. If classified by design methods, meta-waveguides can be classified as either using design primarily by physical intuition, or by computer algorithm based inverse design methods.[1][5]

Meta-waveguides can provide new degrees of design freedom to the available structural library for optical waveguides in integrated photonics.[1][3] Advantages can include enhancing the performance of conventional waveguide based integrated optical devices and creating novel device functionalities.[1][3] Applications of meta-waveguides include beam/polarization splitting,[3] integrated waveguide mode converters,[4] versatile waveguide couplers,[6] lab-on-fiber sensing,[7] nano-optic endoscope imaging,[8] on-chip wavefront shaping,[9] structured-light generations,[10] and optical neural networks.[11][12] The meta-structures can also be further integrated with van der Waals materials to add more functionalities and reconfigurability.[13][14]

References

  1. ^ a b c d Meng, Yuan; Chen, Yizhen; Lu, Longhui; Ding, Yimin; Cusano, Andrea; Fan, Jonathan A.; Hu, Qiaomu; Wang, Kaiyuan; Xie, Zhenwei; Liu, Zhoutian; Yang, Yuanmu (2021-11-22). "Optical meta-waveguides for integrated photonics and beyond". Light: Science & Applications. 10 (1): 235. doi:10.1038/s41377-021-00655-x. ISSN 2047-7538. PMC 8608813. PMID 34811345.
  2. ^ a b Sciences, Chinese Academy of. "Allying meta-structures with diverse optical waveguides for integrated photonics and more". phys.org. Retrieved 2022-05-03.
  3. ^ a b c d e Cheben, Pavel; Halir, Robert; Schmid, Jens H.; Atwater, Harry A.; Smith, David R. (August 2018). "Subwavelength integrated photonics". Nature. 560 (7720): 565–572. doi:10.1038/s41586-018-0421-7. ISSN 1476-4687. PMID 30158604. S2CID 52117964.
  4. ^ a b Li, Zhaoyi; Kim, Myoung-Hwan; Wang, Cheng; Han, Zhaohong; Shrestha, Sajan; Overvig, Adam Christopher; Lu, Ming; Stein, Aaron; Agarwal, Anuradha Murthy; Lončar, Marko; Yu, Nanfang (July 2017). "Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces". Nature Nanotechnology. 12 (7): 675–683. doi:10.1038/nnano.2017.50. ISSN 1748-3395. OSTI 1412777. PMID 28416817.
  5. ^ Molesky, Sean; Lin, Zin; Piggott, Alexander Y.; Jin, Weiliang; Vucković, Jelena; Rodriguez, Alejandro W. (November 2018). "Inverse design in nanophotonics". Nature Photonics. 12 (11): 659–670. arXiv:1801.06715. doi:10.1038/s41566-018-0246-9. ISSN 1749-4893. S2CID 55105919.
  6. ^ Meng, Yuan; Liu, Zhoutian; Xie, Zhenwei; Wang, Ride; Qi, Tiancheng; Hu, Futai; Kim, Hyunseok; Xiao, Qirong; Fu, Xing; Wu, Qiang; Bae, Sang-Hoon (2020-04-01). "Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface". Photonics Research. 8 (4): 564–576. doi:10.1364/PRJ.384449. ISSN 2327-9125. S2CID 213576669.
  7. ^ Principe, Maria; Consales, Marco; Micco, Alberto; Crescitelli, Alessio; Castaldi, Giuseppe; Esposito, Emanuela; La Ferrara, Vera; Cutolo, Antonello; Galdi, Vincenzo; Cusano, Andrea (March 2017). "Optical fiber meta-tips". Light: Science & Applications. 6 (3): e16226. doi:10.1038/lsa.2016.226. ISSN 2047-7538. PMC 6062173. PMID 30167235.
  8. ^ Pahlevaninezhad, Hamid; Khorasaninejad, Mohammadreza; Huang, Yao-Wei; Shi, Zhujun; Hariri, Lida P.; Adams, David C.; Ding, Vivien; Zhu, Alexander; Qiu, Cheng-Wei; Capasso, Federico; Suter, Melissa J. (September 2018). "Nano-optic endoscope for high-resolution optical coherence tomography in vivo". Nature Photonics. 12 (9): 540–547. doi:10.1038/s41566-018-0224-2. ISSN 1749-4893. PMC 6350822. PMID 30713581.
  9. ^ Wang, Zi; Li, Tiantian; Soman, Anishkumar; Mao, Dun; Kananen, Thomas; Gu, Tingyi (2019-08-07). "On-chip wavefront shaping with dielectric metasurface". Nature Communications. 10 (1): 3547. doi:10.1038/s41467-019-11578-y. ISSN 2041-1723. PMC 6686019. PMID 31391468.
  10. ^ He, Tiantian (2021-11-22). "Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge". Optics Express. 29 (24): 39406–39418. doi:10.1364/OE.443186. ISSN 1094-4087. PMID 34809306. S2CID 243813207.
  11. ^ Khoram, Erfan; Chen, Ang; Liu, Dianjing; Ying, Lei; Wang, Qiqi; Yuan, Ming; Yu, Zongfu (2019-08-01). "Nanophotonic media for artificial neural inference". Photonics Research. 7 (8): 823–827. arXiv:1810.07815. doi:10.1364/PRJ.7.000823. ISSN 2327-9125. S2CID 173991055.
  12. ^ Wu, Changming; Yu, Heshan; Lee, Seokhyeong; Peng, Ruoming; Takeuchi, Ichiro; Li, Mo (2021-01-04). "Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network". Nature Communications. 12 (1): 96. doi:10.1038/s41467-020-20365-z. ISSN 2041-1723. PMC 7782756. PMID 33398011.
  13. ^ Meng, Yuan; Feng, Jiangang; Han, Sangmoon; Xu, Zhihao; Mao, Wenbo; Zhang, Tan; Kim, Justin S.; Roh, Ilpyo; Zhao, Yepin; Kim, Dong-Hwan; Yang, Yang; Lee, Jin-Wook; Yang, Lan; Qiu, Cheng-Wei; Bae, Sang-Hoon (2023-04-21). "Photonic van der Waals integration from 2D materials to 3D nanomembranes". Nature Reviews Materials: 1–20. doi:10.1038/s41578-023-00558-w. ISSN 2058-8437.
  14. ^ Liu, Yuan; Huang, Yu; Duan, Xiangfeng (March 2019). "Van der Waals integration before and beyond two-dimensional materials". Nature. 567 (7748): 323–333. doi:10.1038/s41586-019-1013-x. ISSN 1476-4687.