has a solution for any compactly supported distribution . The solution is not unique in general.
The analogue for differential operators whose coefficients are polynomials (rather than constants) is false: see Lewy's example.
Proofs
The original proofs of Malgrange and Ehrenpreis were non-constructive as they used the Hahn–Banach theorem. Since then several constructive proofs have been found.
There is a very short proof using the Fourier transform and the Bernstein–Sato polynomial, as follows. By taking Fourier transforms the Malgrange–Ehrenpreis theorem is equivalent to the fact that every non-zero polynomial has a distributional inverse. By replacing by the product with its complex conjugate, one can also assume that is non-negative. For non-negative polynomials the existence of a distributional inverse follows from the existence of the Bernstein–Sato polynomial, which implies that can be analytically continued as a meromorphic distribution-valued function of the complex variable ; the constant term of the Laurent expansion of at is then a distributional inverse of .
Other proofs, often giving better bounds on the growth of a solution, are given in (Hörmander 1983a, Theorem 7.3.10), (Reed & Simon 1975, Theorem IX.23, p. 48) and (Rosay 1991).
(Hörmander 1983b, chapter 10) gives a detailed discussion of the regularity properties of the fundamental solutions.
A short constructive proof was presented in (Wagner 2009, Proposition 1, p. 458):
is a fundamental solution of , i.e., , if is the principal part of ,
with , the real numbers are pairwise different, and
References
Ehrenpreis, Leon (1954), "Solution of some problems of division. I. Division by a polynomial of derivation.", Amer. J. Math., 76 (4): 883–903, doi:10.2307/2372662, JSTOR2372662, MR0068123
Ehrenpreis, Leon (1955), "Solution of some problems of division. II. Division by a punctual distribution", Amer. J. Math., 77 (2): 286–292, doi:10.2307/2372532, JSTOR2372532, MR0070048
Reed, Michael; Simon, Barry (1975), Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, New York-London: Academic Press Harcourt Brace Jovanovich, Publishers, pp. xv+361, ISBN978-0-12-585002-5, MR0493420
Rosay, Jean-Pierre (1991), "A very elementary proof of the Malgrange-Ehrenpreis theorem", Amer. Math. Monthly, 98 (6): 518–523, doi:10.2307/2324871, JSTOR2324871, MR1109574