MIL-53 (MIL ⇒ Matériaux de l′Institut Lavoisier) belongs to the class of metal-organic framework (MOF) materials. The first synthesis and the name was established by the group of Gérard Férey in 2002.[1] The MIL-53 structure consists of inorganic [M-OH] chains, which are connected to four neighboring inorganic chains by therephthalate-based linker molecules. Each metal center is octahedrally coordinated by six oxygen atoms. Four of these oxygen atoms originate from four different carboxylate groups and the remaining two oxygen atoms belong to two different μ-OH moieties, which bridge neighboring metal centers. The resulting framework structure contains one-dimensional diamond-shaped pores. Many research group have investigated the flexibility of the MIL-53 structure. This flexible behavior, during which the pore cross-section changes reversibly, was termed 'breathing effect' and describes the ability of the MIL-53 framework to respond to external stimuli.[2]
Structural Analogs
Monometallic single-linker MIL-53 analogs
MIL-53(Cr) was the first reported member of the MIL-53 family and is built up from Cr3+ as metal center and terephthalate (benzene-1,4-dicarboxylate) as linker molecules.[1] Based on the toolbox-like design of metal-organic framework materials, different metal centers or linker molecules can be used for the synthesis of other members of the MIL-53 family.[2] Trivalent (M3+) metal centers are mainly used, but materials with divalent (M2+) or tetravalent (M4+) metals have also been published.
Terephthalate was used as linker molecules in the early reports on MIL-53 materials.[1] Later, terephthalate-based linker molecules with additional functional groups were used for the synthesis of functionalized MIL-53 materials.[2] Apart from the two carboxylate groups of terephthalate, which are used for the formation of the framework structure, the functional linker molecules contain one or more functional groups at the benzene ring, which do not participate in the formation of the framework.
Overview of MIL-53(M) materials with functional linker molecules
Apart from monometallic single-linker MIL-53 analogs, which contain one type of metal and one type of linker within the framework structure, several mixed-component MIL-53 analogs were reported. In mixed-metal MIL-53 materials, two different metals are incorporated into the framework structure at crystallographically equivalent lattice positions. Since both type of metals occupy equivalent positions, the metal ratio can usually be changed independent from the framework structure. Mixed-metal MIL-53 analogs have been synthesized mainly by direct synthesis procedures under hydrothermal or solvothermal conditions.
Similar to mixed-metal MIL-53 materials, mixed-linker MIL-53 analogs have been reported, in which two different linker molecules are incorporated into the framework structure at crystallographically equivalent positions with different ratios. One benefit of using the mixed-linker concept is that the number of functional groups in the framework can be adjusted by using different linker ratios.
^ abcMillange, Franck; Walton, Richard I. (2018-09-03). "MIL-53 and its Isoreticular Analogues: a Review of the Chemistry and Structure of a Prototypical Flexible Metal-Organic Framework". Israel Journal of Chemistry. 58 (9–10): 1019–1035. doi:10.1002/ijch.201800084. S2CID105480508.
^Karin Barthelet, Jérôme Marrot, Didier Riou, Gérard Férey (2002), "A Breathing Hybrid Organic–Inorganic Solid with Very Large Pores and High Magnetic Characteristics", Angewandte Chemie International Edition (in German), vol. 41, no. 2, pp. 281–284, doi:10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y, ISSN1521-3773, PMID12491409{{citation}}: CS1 maint: multiple names: authors list (link)
^Hervé Leclerc, Thomas Devic, Sabine Devautour-Vinot, Philippe Bazin, Nathalie Audebrand (2011-10-13), "Influence of the Oxidation State of the Metal Center on the Flexibility and Adsorption Properties of a Porous Metal Organic Framework: MIL-47(V)", The Journal of Physical Chemistry C (in German), vol. 115, no. 40, pp. 19828–19840, doi:10.1021/jp206655y, ISSN1932-7447{{citation}}: CS1 maint: multiple names: authors list (link)
^C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, and G. Férey: Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy. In: J. Am. Chem. Soc. 2002, 124, 45, S. 13519–13526, doi:10.1021/ja0276974.
^Loiseau, Thierry; Serre, Christian; Huguenard, Clarisse; Fink, Gerhard; Taulelle, Francis; Henry, Marc; Bataille, Thierry; Férey, Gérard (2004-03-19). "A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration". Chemistry - A European Journal. 10 (6): 1373–1382. doi:10.1002/chem.200305413. ISSN0947-6539. PMID15034882.
^ abTabatha R. Whitfield, Xiqu Wang, Lumei Liu, Allan J. Jacobson (September 2005), "Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions", Solid State Sciences (in German), vol. 7, no. 9, pp. 1096–1103, Bibcode:2005SSSci...7.1096W, doi:10.1016/j.solidstatesciences.2005.03.007{{citation}}: CS1 maint: multiple names: authors list (link)
^Ekaterina V. Anokhina, Marie Vougo-Zanda, Xiqu Wang, Allan J. Jacobson (2005-10-07), "In(OH)BDC·0.75BDCH 2 (BDC = Benzenedicarboxylate), a Hybrid Inorganic−Organic Vernier Structure", Journal of the American Chemical Society (in German), vol. 127, no. 43, pp. 15000–15001, doi:10.1021/ja055757a, ISSN0002-7863, PMID16248619{{citation}}: CS1 maint: multiple names: authors list (link)
^Nathaniel L. Rosi, Jaheon Kim, Mohamed Eddaoudi, Banglin Chen, Michael O'Keeffe (2005-01-13), "Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units", Journal of the American Chemical Society (in German), vol. 127, no. 5, pp. 1504–1518, doi:10.1021/ja045123o, ISSN0002-7863, PMID15686384{{citation}}: CS1 maint: multiple names: authors list (link)
^Marie Vougo-Zanda, Jin Huang, Ekaterina Anokhina, Xiqu Wang, Allan J. Jacobson (2008-12-15), "Tossing and Turning: Guests in the Flexible Frameworks of Metal(III) Dicarboxylates", Inorganic Chemistry (in German), vol. 47, no. 24, pp. 11535–11542, doi:10.1021/ic800008f, ISSN0020-1669, PMID18433098{{citation}}: CS1 maint: multiple names: authors list (link)
^Guohai Xu, Xiaoguang Zhang, Peng Guo, Chengling Pan, Hongjie Zhang (2010-03-24), "Mn II -based MIL-53 Analogues: Synthesis Using Neutral Bridging μ 2 -Ligands and Application in Liquid-Phase Adsorption and Separation of C6−C8 Aromatics", Journal of the American Chemical Society (in German), vol. 132, no. 11, pp. 3656–3657, doi:10.1021/ja910818a, ISSN0002-7863, PMID20196605{{citation}}: CS1 maint: multiple names: authors list (link)
^Mowat, John P.S.; Miller, Stuart R.; Slawin, Alexandra M.Z.; Seymour, Valerie R.; Ashbrook, Sharon E.; Wright, Paul A. (June 2011). "Synthesis, characterisation and adsorption properties of microporous scandium carboxylates with rigid and flexible frameworks". Microporous and Mesoporous Materials. 142 (1): 322–333. doi:10.1016/j.micromeso.2010.12.016.
^Tim Ahnfeldt, Daniel Gunzelmann, Thierry Loiseau, Dunja Hirsemann, Jürgen Senker (2009-04-06), "Synthesis and Modification of a Functionalized 3D Open-Framework Structure with MIL-53 Topology", Inorganic Chemistry (in German), vol. 48, no. 7, pp. 3057–3064, doi:10.1021/ic8023265, hdl:10536/DRO/DU:30064444, ISSN0020-1669, PMID19245258{{citation}}: CS1 maint: multiple names: authors list (link)
^Tim Ahnfeldt, Nathalie Guillou, Daniel Gunzelmann, Irene Margiolaki, Thierry Loiseau (2009-06-29), "[Al 4 (OH) 2 (OCH 3 ) 4 (H 2 N-bdc) 3 ]⋅ x H 2 O: A 12-Connected Porous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick", Angewandte Chemie International Edition (in German), vol. 48, no. 28, pp. 5163–5166, doi:10.1002/anie.200901409, PMID19504512{{citation}}: CS1 maint: multiple names: authors list (link)
^Sebastian Bauer, Christian Serre, Thomas Devic, Patricia Horcajada, Jérôme Marrot (2008-08-06), "High-Throughput Assisted Rationalization of the Formation of Metal Organic Frameworks in the Iron(III) Aminoterephthalate Solvothermal System", Inorganic Chemistry (in German), vol. 47, no. 17, pp. 7568–7576, doi:10.1021/ic800538r, ISSN0020-1669, PMID18681423{{citation}}: CS1 maint: multiple names: authors list (link)
^ abPablo Serra-Crespo, Elena Gobechiya, Enrique V. Ramos-Fernandez, Jana Juan-Alcañiz, Alberto Martinez-Joaristi (2012-09-04), "Interplay of Metal Node and Amine Functionality in NH 2 -MIL-53: Modulating Breathing Behavior through Intra-framework Interactions", Langmuir (in German), vol. 28, no. 35, pp. 12916–12922, doi:10.1021/la302824j, ISSN0743-7463, PMID22891682{{citation}}: CS1 maint: multiple names: authors list (link)
^ abcdefShyam Biswas, Danny E. P. Vanpoucke, Toon Verstraelen, Matthias Vandichel, Sarah Couck (2013-11-07), "New Functionalized Metal–Organic Frameworks MIL-47-X (X = −Cl, −Br, −CH 3, −CF 3, −OH, −OCH 3 ): Synthesis, Characterization, and CO 2 Adsorption Properties", The Journal of Physical Chemistry C (in German), vol. 117, no. 44, pp. 22784–22796, doi:10.1021/jp406835n, ISSN1932-7447{{citation}}: CS1 maint: multiple names: authors list (link)
^ abPascal G. Yot, Ke Yang, Vincent Guillerm, Florence Ragon, Vladimir Dmitriev (September 2016), "Impact of the Metal Centre and Functionalization on the Mechanical Behaviour of MIL-53 Metal-Organic Frameworks: Impact of the Metal Centre and Functionalization on the Mechanical Behaviour of MIL-53 Metal-Organic Frameworks", European Journal of Inorganic Chemistry (in German), vol. 2016, no. 27, pp. 4424–4429, doi:10.1002/ejic.201600263, hdl:10023/11147, S2CID100565312{{citation}}: CS1 maint: multiple names: authors list (link)
^ abcdeShyam Biswas, Tim Ahnfeldt, Norbert Stock (2011-10-03), "New Functionalized Flexible Al-MIL-53-X (X = -Cl, -Br, -CH 3, -NO 2, -(OH) 2 ) Solids: Syntheses, Characterization, Sorption, and Breathing Behavior", Inorganic Chemistry (in German), vol. 50, no. 19, pp. 9518–9526, doi:10.1021/ic201219g, ISSN0020-1669, PMID21899293{{citation}}: CS1 maint: multiple names: authors list (link)
^ abcdeThomas Devic, Patricia Horcajada, Christian Serre, Fabrice Salles, Guillaume Maurin (2010-01-27), "Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host−Guest Interactions", Journal of the American Chemical Society (in German), vol. 132, no. 3, pp. 1127–1136, doi:10.1021/ja9092715, ISSN0002-7863, PMID20038143{{citation}}: CS1 maint: multiple names: authors list (link)
^ abcLei Wu, Gérald Chaplais, Ming Xue, Shilun Qiu, Joël Patarin (2019), "New functionalized MIL-53(In) solids: syntheses, characterization, sorption, and structural flexibility", RSC Advances (in German), vol. 9, no. 4, pp. 1918–1928, Bibcode:2019RSCAd...9.1918W, doi:10.1039/C8RA08522F, ISSN2046-2069, PMC9059721, PMID35516115{{citation}}: CS1 maint: multiple names: authors list (link)
^Dieter Himsl, Dirk Wallacher, Martin Hartmann (2009-06-08), "Improving the Hydrogen-Adsorption Properties of a Hydroxy-Modified MIL-53(Al) Structural Analogue by Lithium Doping", Angewandte Chemie International Edition (in German), vol. 48, no. 25, pp. 4639–4642, doi:10.1002/anie.200806203, PMID19455533{{citation}}: CS1 maint: multiple names: authors list (link)
^ abChristophe Volkringer, Seth M. Cohen (2010-06-21), "Generating Reactive MILs: Isocyanate- and Isothiocyanate-Bearing MILs through Postsynthetic Modification", Angewandte Chemie International Edition (in German), vol. 49, no. 27, pp. 4644–4648, doi:10.1002/anie.201001527, PMID20480478
^ abcdeAndrea Centrone, Takuya Harada, Scott Speakman, T. Alan Hatton (2010-07-07), "Facile Synthesis of Vanadium Metal-Organic Frameworks and their Magnetic Properties", Small (in German), vol. 6, no. 15, pp. 1598–1602, doi:10.1002/smll.201000773, PMID20623532{{citation}}: CS1 maint: multiple names: authors list (link)
^ abShyam Biswas, Sarah Couck, Dmytro Denysenko, Asamanjoy Bhunia, Maciej Grzywa (2013-11-15), "Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks", Microporous and Mesoporous Materials (in German), vol. 181, pp. 175–181, doi:10.1016/j.micromeso.2013.07.030{{citation}}: CS1 maint: multiple names: authors list (link)
^ abcKaren Markey, Martin Krüger, Tomasz Seidler, Helge Reinsch, Thierry Verbiest (2017-11-16), "Emergence of Nonlinear Optical Activity by Incorporation of a Linker Carrying the p -Nitroaniline Motif in MIL-53 Frameworks", The Journal of Physical Chemistry C (in German), vol. 121, no. 45, pp. 25509–25519, doi:10.1021/acs.jpcc.7b09190, ISSN1932-7447, PMC5694968, PMID29170688{{citation}}: CS1 maint: multiple names: authors list (link)
^Christophe Volkringer, Thierry Loiseau, Nathalie Guillou, Gérard Férey, Mohamed Haouas (2010-10-05), "High-Throughput Aided Synthesis of the Porous Metal−Organic Framework-Type Aluminum Pyromellitate, MIL-121, with Extra Carboxylic Acid Functionalization", Inorganic Chemistry (in German), vol. 49, no. 21, pp. 9852–9862, doi:10.1021/ic101128w, ISSN0020-1669, PMID20923169{{citation}}: CS1 maint: multiple names: authors list (link)
^Morgane Sanselme, Jean-Marc Grenèche, Myriam Riou-Cavellec, Gérard Férey (August 2004), "The first ferric carboxylate with a three-dimensional hydrid open-framework (MIL-82): its synthesis, structure, magnetic behavior and study of its dehydration by Mössbauer spectroscopy", Solid State Sciences (in German), vol. 6, no. 8, pp. 853–858, Bibcode:2004SSSci...6..853S, doi:10.1016/j.solidstatesciences.2004.04.001{{citation}}: CS1 maint: multiple names: authors list (link)
^Christian Serre, Franck Millange, Thomas Devic, Nathalie Audebrand, Wouter Van Beek (2006-08-10), "Synthesis and structure determination of new open-framework chromium carboxylate MIL-105 or CrIII(OH)·{O2C–C6(CH3)4–CO2}·nH2O", Materials Research Bulletin (in German), vol. 41, no. 8, pp. 1550–1557, doi:10.1016/j.materresbull.2006.01.013{{citation}}: CS1 maint: multiple names: authors list (link)
^Angiolina Comotti, Silvia Bracco, Piero Sozzani, Satoshi Horike, Ryotaro Matsuda (2008-10-15), "Nanochannels of Two Distinct Cross-Sections in a Porous Al-Based Coordination Polymer", Journal of the American Chemical Society (in German), vol. 130, no. 41, pp. 13664–13672, doi:10.1021/ja802589u, ISSN0002-7863, PMID18798624{{citation}}: CS1 maint: multiple names: authors list (link)
^Mendt, Matthias; Jee, Bettina; Himsl, Dieter; Moschkowitz, Lutz; Ahnfeldt, Tim; Stock, Norbert; Hartmann, Martin; Pöppl, Andreas (March 2014). "A Continuous-Wave Electron Paramagnetic Resonance Study of Carbon Dioxide Adsorption on the Metal–Organic Frame-Work MIL-53". Applied Magnetic Resonance. 45 (3): 269–285. doi:10.1007/s00723-014-0518-6. ISSN0937-9347. S2CID94965421.
^Mendt, Matthias; Jee, Bettina; Stock, Norbert; Ahnfeldt, Tim; Hartmann, Martin; Himsl, Dieter; Pöppl, Andreas (2010-11-18). "Structural Phase Transitions and Thermal Hysteresis in the Metal−Organic Framework Compound MIL-53 As Studied by Electron Spin Resonance Spectroscopy". The Journal of Physical Chemistry C. 114 (45): 19443–19451. doi:10.1021/jp107487g. ISSN1932-7447.
^Pera-Titus, M.; Lescouet, T.; Aguado, S.; Farrusseng, D. (2012-05-03). "Quantitative Characterization of Breathing upon Adsorption for a Series of Amino-Functionalized MIL-53". The Journal of Physical Chemistry C. 116 (17): 9507–9516. doi:10.1021/jp2117856. ISSN1932-7447.
^Andonova, Stanislava; Ivanova, Elena; Yang, Jie; Hadjiivanov, Konstantin (2017-08-31). "Adsorption Forms of CO 2 on MIL-53(Al) and MIL-53(Al)–OH x As Revealed by FTIR Spectroscopy". The Journal of Physical Chemistry C. 121 (34): 18665–18673. doi:10.1021/acs.jpcc.7b05538. ISSN1932-7447.