Möbius–Kantor polygon
In geometry, the Möbius–Kantor polygon is a regular complex polygon 3{3}3, , in . 3{3}3 has 8 vertices, and 8 edges. It is self-dual. Every vertex is shared by 3 triangular edges.[1] Coxeter named it a Möbius–Kantor polygon for sharing the complex configuration structure as the Möbius–Kantor configuration, (83).[2] Discovered by G.C. Shephard in 1952, he represented it as 3(24)3, with its symmetry, Coxeter called as 3[3]3, isomorphic to the binary tetrahedral group, order 24. CoordinatesThe 8 vertex coordinates of this polygon can be given in , as:
where . As a configurationThe configuration matrix for 3{3}3 is:[3] Its structure can be represented as a hypergraph, connecting 8 nodes by 8 3-node-set hyperedges. Real representationIt has a real representation as the 16-cell, , in 4-dimensional space, sharing the same 8 vertices. The 24 edges in the 16-cell are seen in the Möbius–Kantor polygon when the 8 triangular edges are drawn as 3-separate edges. The triangles are represented 2 sets of 4 red or blue outlines. The B4 projections are given in two different symmetry orientations between the two color sets.
The 3{3}3 polygon can be seen in a regular skew polyhedral net inside a 16-cell, with 8 vertices, 24 edges, 16 of its 32 faces. Alternate yellow triangular faces, interpreted as 3-edges, make two copies of the 3{3}3 polygon. Related polytopes
It can also be seen as an alternation of , represented as . has 16 vertices, and 24 edges. A compound of two, in dual positions, and , can be represented as , contains all 16 vertices of . The truncation , is the same as the regular polygon, 3{6}2, . Its edge-diagram is the cayley diagram for 3[3]3. The regular Hessian polyhedron 3{3}3{3}3, has this polygon as a facet and vertex figure. NotesReferences
|