Certain constant-recursive integer sequences
Not to be confused with the sequence of
Lucas numbers , which is a particular Lucas sequence.
In mathematics , the Lucas sequences
U
n
(
P
,
Q
)
{\displaystyle U_{n}(P,Q)}
and
V
n
(
P
,
Q
)
{\displaystyle V_{n}(P,Q)}
are certain constant-recursive integer sequences that satisfy the recurrence relation
x
n
=
P
⋅
x
n
−
1
−
Q
⋅
x
n
−
2
{\displaystyle x_{n}=P\cdot x_{n-1}-Q\cdot x_{n-2}}
where
P
{\displaystyle P}
and
Q
{\displaystyle Q}
are fixed integers . Any sequence satisfying this recurrence relation can be represented as a linear combination of the Lucas sequences
U
n
(
P
,
Q
)
{\displaystyle U_{n}(P,Q)}
and
V
n
(
P
,
Q
)
.
{\displaystyle V_{n}(P,Q).}
More generally, Lucas sequences
U
n
(
P
,
Q
)
{\displaystyle U_{n}(P,Q)}
and
V
n
(
P
,
Q
)
{\displaystyle V_{n}(P,Q)}
represent sequences of polynomials in
P
{\displaystyle P}
and
Q
{\displaystyle Q}
with integer coefficients .
Famous examples of Lucas sequences include the Fibonacci numbers , Mersenne numbers , Pell numbers , Lucas numbers , Jacobsthal numbers , and a superset of Fermat numbers (see below). Lucas sequences are named after the French mathematician Édouard Lucas .
Recurrence relations
Given two integer parameters
P
{\displaystyle P}
and
Q
{\displaystyle Q}
, the Lucas sequences of the first kind
U
n
(
P
,
Q
)
{\displaystyle U_{n}(P,Q)}
and of the second kind
V
n
(
P
,
Q
)
{\displaystyle V_{n}(P,Q)}
are defined by the recurrence relations :
U
0
(
P
,
Q
)
=
0
,
U
1
(
P
,
Q
)
=
1
,
U
n
(
P
,
Q
)
=
P
⋅
U
n
−
1
(
P
,
Q
)
−
Q
⋅
U
n
−
2
(
P
,
Q
)
for
n
>
1
,
{\displaystyle {\begin{aligned}U_{0}(P,Q)&=0,\\U_{1}(P,Q)&=1,\\U_{n}(P,Q)&=P\cdot U_{n-1}(P,Q)-Q\cdot U_{n-2}(P,Q){\mbox{ for }}n>1,\end{aligned}}}
and
V
0
(
P
,
Q
)
=
2
,
V
1
(
P
,
Q
)
=
P
,
V
n
(
P
,
Q
)
=
P
⋅
V
n
−
1
(
P
,
Q
)
−
Q
⋅
V
n
−
2
(
P
,
Q
)
for
n
>
1.
{\displaystyle {\begin{aligned}V_{0}(P,Q)&=2,\\V_{1}(P,Q)&=P,\\V_{n}(P,Q)&=P\cdot V_{n-1}(P,Q)-Q\cdot V_{n-2}(P,Q){\mbox{ for }}n>1.\end{aligned}}}
It is not hard to show that for
n
>
0
{\displaystyle n>0}
,
U
n
(
P
,
Q
)
=
P
⋅
U
n
−
1
(
P
,
Q
)
+
V
n
−
1
(
P
,
Q
)
2
,
V
n
(
P
,
Q
)
=
(
P
2
−
4
Q
)
⋅
U
n
−
1
(
P
,
Q
)
+
P
⋅
V
n
−
1
(
P
,
Q
)
2
.
{\displaystyle {\begin{aligned}U_{n}(P,Q)&={\frac {P\cdot U_{n-1}(P,Q)+V_{n-1}(P,Q)}{2}},\\V_{n}(P,Q)&={\frac {(P^{2}-4Q)\cdot U_{n-1}(P,Q)+P\cdot V_{n-1}(P,Q)}{2}}.\end{aligned}}}
The above relations can be stated in matrix form as follows:
[
U
n
(
P
,
Q
)
U
n
+
1
(
P
,
Q
)
]
=
[
0
1
−
Q
P
]
⋅
[
U
n
−
1
(
P
,
Q
)
U
n
(
P
,
Q
)
]
,
{\displaystyle {\begin{bmatrix}U_{n}(P,Q)\\U_{n+1}(P,Q)\end{bmatrix}}={\begin{bmatrix}0&1\\-Q&P\end{bmatrix}}\cdot {\begin{bmatrix}U_{n-1}(P,Q)\\U_{n}(P,Q)\end{bmatrix}},}
[
V
n
(
P
,
Q
)
V
n
+
1
(
P
,
Q
)
]
=
[
0
1
−
Q
P
]
⋅
[
V
n
−
1
(
P
,
Q
)
V
n
(
P
,
Q
)
]
,
{\displaystyle {\begin{bmatrix}V_{n}(P,Q)\\V_{n+1}(P,Q)\end{bmatrix}}={\begin{bmatrix}0&1\\-Q&P\end{bmatrix}}\cdot {\begin{bmatrix}V_{n-1}(P,Q)\\V_{n}(P,Q)\end{bmatrix}},}
[
U
n
(
P
,
Q
)
V
n
(
P
,
Q
)
]
=
[
P
/
2
1
/
2
(
P
2
−
4
Q
)
/
2
P
/
2
]
⋅
[
U
n
−
1
(
P
,
Q
)
V
n
−
1
(
P
,
Q
)
]
.
{\displaystyle {\begin{bmatrix}U_{n}(P,Q)\\V_{n}(P,Q)\end{bmatrix}}={\begin{bmatrix}P/2&1/2\\(P^{2}-4Q)/2&P/2\end{bmatrix}}\cdot {\begin{bmatrix}U_{n-1}(P,Q)\\V_{n-1}(P,Q)\end{bmatrix}}.}
Examples
Initial terms of Lucas sequences
U
n
(
P
,
Q
)
{\displaystyle U_{n}(P,Q)}
and
V
n
(
P
,
Q
)
{\displaystyle V_{n}(P,Q)}
are given in the table:
n
U
n
(
P
,
Q
)
V
n
(
P
,
Q
)
0
0
2
1
1
P
2
P
P
2
−
2
Q
3
P
2
−
Q
P
3
−
3
P
Q
4
P
3
−
2
P
Q
P
4
−
4
P
2
Q
+
2
Q
2
5
P
4
−
3
P
2
Q
+
Q
2
P
5
−
5
P
3
Q
+
5
P
Q
2
6
P
5
−
4
P
3
Q
+
3
P
Q
2
P
6
−
6
P
4
Q
+
9
P
2
Q
2
−
2
Q
3
{\displaystyle {\begin{array}{r|l|l}n&U_{n}(P,Q)&V_{n}(P,Q)\\\hline 0&0&2\\1&1&P\\2&P&{P}^{2}-2Q\\3&{P}^{2}-Q&{P}^{3}-3PQ\\4&{P}^{3}-2PQ&{P}^{4}-4{P}^{2}Q+2{Q}^{2}\\5&{P}^{4}-3{P}^{2}Q+{Q}^{2}&{P}^{5}-5{P}^{3}Q+5P{Q}^{2}\\6&{P}^{5}-4{P}^{3}Q+3P{Q}^{2}&{P}^{6}-6{P}^{4}Q+9{P}^{2}{Q}^{2}-2{Q}^{3}\end{array}}}
Explicit expressions
The characteristic equation of the recurrence relation for Lucas sequences
U
n
(
P
,
Q
)
{\displaystyle U_{n}(P,Q)}
and
V
n
(
P
,
Q
)
{\displaystyle V_{n}(P,Q)}
is:
x
2
−
P
x
+
Q
=
0
{\displaystyle x^{2}-Px+Q=0\,}
It has the discriminant
D
=
P
2
−
4
Q
{\displaystyle D=P^{2}-4Q}
and the roots :
a
=
P
+
D
2
and
b
=
P
−
D
2
.
{\displaystyle a={\frac {P+{\sqrt {D}}}{2}}\quad {\text{and}}\quad b={\frac {P-{\sqrt {D}}}{2}}.\,}
Thus:
a
+
b
=
P
,
{\displaystyle a+b=P\,,}
a
b
=
1
4
(
P
2
−
D
)
=
Q
,
{\displaystyle ab={\frac {1}{4}}(P^{2}-D)=Q\,,}
a
−
b
=
D
.
{\displaystyle a-b={\sqrt {D}}\,.}
Note that the sequence
a
n
{\displaystyle a^{n}}
and the sequence
b
n
{\displaystyle b^{n}}
also satisfy the recurrence relation. However these might not be integer sequences.
Distinct roots
When
D
≠
0
{\displaystyle D\neq 0}
, a and b are distinct and one quickly verifies that
a
n
=
V
n
+
U
n
D
2
{\displaystyle a^{n}={\frac {V_{n}+U_{n}{\sqrt {D}}}{2}}}
b
n
=
V
n
−
U
n
D
2
.
{\displaystyle b^{n}={\frac {V_{n}-U_{n}{\sqrt {D}}}{2}}.}
It follows that the terms of Lucas sequences can be expressed in terms of a and b as follows
U
n
=
a
n
−
b
n
a
−
b
=
a
n
−
b
n
D
{\displaystyle U_{n}={\frac {a^{n}-b^{n}}{a-b}}={\frac {a^{n}-b^{n}}{\sqrt {D}}}}
V
n
=
a
n
+
b
n
{\displaystyle V_{n}=a^{n}+b^{n}\,}
Repeated root
The case
D
=
0
{\displaystyle D=0}
occurs exactly when
P
=
2
S
and
Q
=
S
2
{\displaystyle P=2S{\text{ and }}Q=S^{2}}
for some integer S so that
a
=
b
=
S
{\displaystyle a=b=S}
. In this case one easily finds that
U
n
(
P
,
Q
)
=
U
n
(
2
S
,
S
2
)
=
n
S
n
−
1
{\displaystyle U_{n}(P,Q)=U_{n}(2S,S^{2})=nS^{n-1}\,}
V
n
(
P
,
Q
)
=
V
n
(
2
S
,
S
2
)
=
2
S
n
.
{\displaystyle V_{n}(P,Q)=V_{n}(2S,S^{2})=2S^{n}.\,}
Properties
Generating functions
The ordinary generating functions are
∑
n
≥
0
U
n
(
P
,
Q
)
z
n
=
z
1
−
P
z
+
Q
z
2
;
{\displaystyle \sum _{n\geq 0}U_{n}(P,Q)z^{n}={\frac {z}{1-Pz+Qz^{2}}};}
∑
n
≥
0
V
n
(
P
,
Q
)
z
n
=
2
−
P
z
1
−
P
z
+
Q
z
2
.
{\displaystyle \sum _{n\geq 0}V_{n}(P,Q)z^{n}={\frac {2-Pz}{1-Pz+Qz^{2}}}.}
Pell equations
When
Q
=
±
1
{\displaystyle Q=\pm 1}
, the Lucas sequences
U
n
(
P
,
Q
)
{\displaystyle U_{n}(P,Q)}
and
V
n
(
P
,
Q
)
{\displaystyle V_{n}(P,Q)}
satisfy certain Pell equations :
V
n
(
P
,
1
)
2
−
D
⋅
U
n
(
P
,
1
)
2
=
4
,
{\displaystyle V_{n}(P,1)^{2}-D\cdot U_{n}(P,1)^{2}=4,}
V
n
(
P
,
−
1
)
2
−
D
⋅
U
n
(
P
,
−
1
)
2
=
4
(
−
1
)
n
.
{\displaystyle V_{n}(P,-1)^{2}-D\cdot U_{n}(P,-1)^{2}=4(-1)^{n}.}
Relations between sequences with different parameters
For any number c , the sequences
U
n
(
P
′
,
Q
′
)
{\displaystyle U_{n}(P',Q')}
and
V
n
(
P
′
,
Q
′
)
{\displaystyle V_{n}(P',Q')}
with
P
′
=
P
+
2
c
{\displaystyle P'=P+2c}
Q
′
=
c
P
+
Q
+
c
2
{\displaystyle Q'=cP+Q+c^{2}}
have the same discriminant as
U
n
(
P
,
Q
)
{\displaystyle U_{n}(P,Q)}
and
V
n
(
P
,
Q
)
{\displaystyle V_{n}(P,Q)}
:
P
′
2
−
4
Q
′
=
(
P
+
2
c
)
2
−
4
(
c
P
+
Q
+
c
2
)
=
P
2
−
4
Q
=
D
.
{\displaystyle P'^{2}-4Q'=(P+2c)^{2}-4(cP+Q+c^{2})=P^{2}-4Q=D.}
For any number c , we also have
U
n
(
c
P
,
c
2
Q
)
=
c
n
−
1
⋅
U
n
(
P
,
Q
)
,
{\displaystyle U_{n}(cP,c^{2}Q)=c^{n-1}\cdot U_{n}(P,Q),}
V
n
(
c
P
,
c
2
Q
)
=
c
n
⋅
V
n
(
P
,
Q
)
.
{\displaystyle V_{n}(cP,c^{2}Q)=c^{n}\cdot V_{n}(P,Q).}
Other relations
The terms of Lucas sequences satisfy relations that are generalizations of those between Fibonacci numbers
F
n
=
U
n
(
1
,
−
1
)
{\displaystyle F_{n}=U_{n}(1,-1)}
and Lucas numbers
L
n
=
V
n
(
1
,
−
1
)
{\displaystyle L_{n}=V_{n}(1,-1)}
. For example:
General case
(
P
,
Q
)
=
(
1
,
−
1
)
,
D
=
P
2
−
4
Q
=
5
D
U
n
=
V
n
+
1
−
Q
V
n
−
1
=
2
V
n
+
1
−
P
V
n
5
F
n
=
L
n
+
1
+
L
n
−
1
=
2
L
n
+
1
−
L
n
V
n
=
U
n
+
1
−
Q
U
n
−
1
=
2
U
n
+
1
−
P
U
n
L
n
=
F
n
+
1
+
F
n
−
1
=
2
F
n
+
1
−
F
n
U
m
+
n
=
U
n
U
m
+
1
−
Q
U
m
U
n
−
1
=
U
m
V
n
−
Q
n
U
m
−
n
F
m
+
n
=
F
n
F
m
+
1
+
F
m
F
n
−
1
=
F
m
L
n
−
(
−
1
)
n
F
m
−
n
U
2
n
=
U
n
(
U
n
+
1
−
Q
U
n
−
1
)
=
U
n
V
n
F
2
n
=
F
n
(
F
n
+
1
+
F
n
−
1
)
=
F
n
L
n
U
2
n
+
1
=
U
n
+
1
2
−
Q
U
n
2
F
2
n
+
1
=
F
n
+
1
2
+
F
n
2
V
m
+
n
=
V
m
V
n
−
Q
n
V
m
−
n
=
D
U
m
U
n
+
Q
n
V
m
−
n
L
m
+
n
=
L
m
L
n
−
(
−
1
)
n
L
m
−
n
=
5
F
m
F
n
+
(
−
1
)
n
L
m
−
n
V
2
n
=
V
n
2
−
2
Q
n
=
D
U
n
2
+
2
Q
n
L
2
n
=
L
n
2
−
2
(
−
1
)
n
=
5
F
n
2
+
2
(
−
1
)
n
U
m
+
n
=
U
m
V
n
+
U
n
V
m
2
F
m
+
n
=
F
m
L
n
+
F
n
L
m
2
V
m
+
n
=
V
m
V
n
+
D
U
m
U
n
2
L
m
+
n
=
L
m
L
n
+
5
F
m
F
n
2
V
n
2
−
D
U
n
2
=
4
Q
n
L
n
2
−
5
F
n
2
=
4
(
−
1
)
n
U
n
2
−
U
n
−
1
U
n
+
1
=
Q
n
−
1
F
n
2
−
F
n
−
1
F
n
+
1
=
(
−
1
)
n
−
1
V
n
2
−
V
n
−
1
V
n
+
1
=
D
Q
n
−
1
L
n
2
−
L
n
−
1
L
n
+
1
=
5
(
−
1
)
n
−
1
2
n
−
1
U
n
=
(
n
1
)
P
n
−
1
+
(
n
3
)
P
n
−
3
D
+
⋯
2
n
−
1
F
n
=
(
n
1
)
+
5
(
n
3
)
+
⋯
2
n
−
1
V
n
=
P
n
+
(
n
2
)
P
n
−
2
D
+
(
n
4
)
P
n
−
4
D
2
+
⋯
2
n
−
1
L
n
=
1
+
5
(
n
2
)
+
5
2
(
n
4
)
+
⋯
{\displaystyle {\begin{array}{r|l}{\text{General case}}&(P,Q)=(1,-1),D=P^{2}-4Q=5\\\hline DU_{n}={V_{n+1}-QV_{n-1}}=2V_{n+1}-PV_{n}&5F_{n}={L_{n+1}+L_{n-1}}=2L_{n+1}-L_{n}\\V_{n}=U_{n+1}-QU_{n-1}=2U_{n+1}-PU_{n}&L_{n}=F_{n+1}+F_{n-1}=2F_{n+1}-F_{n}\\U_{m+n}=U_{n}U_{m+1}-QU_{m}U_{n-1}=U_{m}V_{n}-Q^{n}U_{m-n}&F_{m+n}=F_{n}F_{m+1}+F_{m}F_{n-1}=F_{m}L_{n}-(-1)^{n}F_{m-n}\\U_{2n}=U_{n}(U_{n+1}-QU_{n-1})=U_{n}V_{n}&F_{2n}=F_{n}(F_{n+1}+F_{n-1})=F_{n}L_{n}\\U_{2n+1}=U_{n+1}^{2}-QU_{n}^{2}&F_{2n+1}=F_{n+1}^{2}+F_{n}^{2}\\V_{m+n}=V_{m}V_{n}-Q^{n}V_{m-n}=DU_{m}U_{n}+Q^{n}V_{m-n}&L_{m+n}=L_{m}L_{n}-(-1)^{n}L_{m-n}=5F_{m}F_{n}+(-1)^{n}L_{m-n}\\V_{2n}=V_{n}^{2}-2Q^{n}=DU_{n}^{2}+2Q^{n}&L_{2n}=L_{n}^{2}-2(-1)^{n}=5F_{n}^{2}+2(-1)^{n}\\U_{m+n}={\frac {U_{m}V_{n}+U_{n}V_{m}}{2}}&F_{m+n}={\frac {F_{m}L_{n}+F_{n}L_{m}}{2}}\\V_{m+n}={\frac {V_{m}V_{n}+DU_{m}U_{n}}{2}}&L_{m+n}={\frac {L_{m}L_{n}+5F_{m}F_{n}}{2}}\\V_{n}^{2}-DU_{n}^{2}=4Q^{n}&L_{n}^{2}-5F_{n}^{2}=4(-1)^{n}\\U_{n}^{2}-U_{n-1}U_{n+1}=Q^{n-1}&F_{n}^{2}-F_{n-1}F_{n+1}=(-1)^{n-1}\\V_{n}^{2}-V_{n-1}V_{n+1}=DQ^{n-1}&L_{n}^{2}-L_{n-1}L_{n+1}=5(-1)^{n-1}\\2^{n-1}U_{n}={n \choose 1}P^{n-1}+{n \choose 3}P^{n-3}D+\cdots &2^{n-1}F_{n}={n \choose 1}+5{n \choose 3}+\cdots \\2^{n-1}V_{n}=P^{n}+{n \choose 2}P^{n-2}D+{n \choose 4}P^{n-4}D^{2}+\cdots &2^{n-1}L_{n}=1+5{n \choose 2}+5^{2}{n \choose 4}+\cdots \end{array}}}
Divisibility properties
Among the consequences is that
U
k
m
(
P
,
Q
)
{\displaystyle U_{km}(P,Q)}
is a multiple of
U
m
(
P
,
Q
)
{\displaystyle U_{m}(P,Q)}
, i.e., the sequence
(
U
m
(
P
,
Q
)
)
m
≥
1
{\displaystyle (U_{m}(P,Q))_{m\geq 1}}
is a divisibility sequence . This implies, in particular, that
U
n
(
P
,
Q
)
{\displaystyle U_{n}(P,Q)}
can be prime only when n is prime.
Another consequence is an analog of exponentiation by squaring that allows fast computation of
U
n
(
P
,
Q
)
{\displaystyle U_{n}(P,Q)}
for large values of n .
Moreover, if
gcd
(
P
,
Q
)
=
1
{\displaystyle \gcd(P,Q)=1}
, then
(
U
m
(
P
,
Q
)
)
m
≥
1
{\displaystyle (U_{m}(P,Q))_{m\geq 1}}
is a strong divisibility sequence .
Other divisibility properties are as follows:[ 1]
If n is an odd multiple of m , then
V
m
{\displaystyle V_{m}}
divides
V
n
{\displaystyle V_{n}}
.
Let N be an integer relatively prime to 2Q . If the smallest positive integer r for which N divides
U
r
{\displaystyle U_{r}}
exists, then the set of n for which N divides
U
n
{\displaystyle U_{n}}
is exactly the set of multiples of r .
If P and Q are even , then
U
n
,
V
n
{\displaystyle U_{n},V_{n}}
are always even except
U
1
{\displaystyle U_{1}}
.
If P is odd and Q is even, then
U
n
,
V
n
{\displaystyle U_{n},V_{n}}
are always odd for every
n
>
0
{\displaystyle n>0}
.
If P is even and Q is odd, then the parity of
U
n
{\displaystyle U_{n}}
is the same as n and
V
n
{\displaystyle V_{n}}
is always even.
If P and Q are odd, then
U
n
,
V
n
{\displaystyle U_{n},V_{n}}
are even if and only if n is a multiple of 3.
If p is an odd prime, then
U
p
≡
(
D
p
)
,
V
p
≡
P
(
mod
p
)
{\displaystyle U_{p}\equiv \left({\tfrac {D}{p}}\right),V_{p}\equiv P{\pmod {p}}}
(see Legendre symbol ).
If p is an odd prime which divides P and Q , then p divides
U
n
{\displaystyle U_{n}}
for every
n
>
1
{\displaystyle n>1}
.
If p is an odd prime which divides P but not Q , then p divides
U
n
{\displaystyle U_{n}}
if and only if n is even.
If p is an odd prime which divides Q but not P , then p never divides
U
n
{\displaystyle U_{n}}
for any
n
>
0
{\displaystyle n>0}
.
If p is an odd prime which divides D but not PQ , then p divides
U
n
{\displaystyle U_{n}}
if and only if p divides n .
If p is an odd prime which does not divide PQD , then p divides
U
l
{\displaystyle U_{l}}
, where
l
=
p
−
(
D
p
)
{\displaystyle l=p-\left({\tfrac {D}{p}}\right)}
.
The last fact generalizes Fermat's little theorem . These facts are used in the Lucas–Lehmer primality test .
Like Fermat's little theorem, the converse of the last fact holds often, but not always; there exist composite numbers n relatively prime to D and dividing
U
l
{\displaystyle U_{l}}
, where
l
=
n
−
(
D
n
)
{\displaystyle l=n-\left({\tfrac {D}{n}}\right)}
. Such composite numbers are called Lucas pseudoprimes .
A prime factor of a term in a Lucas sequence which does not divide any earlier term in the sequence is called primitive .
Carmichael's theorem states that all but finitely many of the terms in a Lucas sequence have a primitive prime factor.[ 2] Indeed, Carmichael (1913) showed that if D is positive and n is not 1, 2 or 6, then
U
n
{\displaystyle U_{n}}
has a primitive prime factor. In the case D is negative, a deep result of Bilu, Hanrot, Voutier and Mignotte[ 3] shows that if n > 30, then
U
n
{\displaystyle U_{n}}
has a primitive prime factor and determines all cases
U
n
{\displaystyle U_{n}}
has no primitive prime factor.
Specific names
The Lucas sequences for some values of P and Q have specific names:
Un (1, −1) : Fibonacci numbers
Vn (1, −1) : Lucas numbers
Un (2, −1) : Pell numbers
Vn (2, −1) : Pell–Lucas numbers (companion Pell numbers)
Un (1, −2) : Jacobsthal numbers
Vn (1, −2) : Jacobsthal–Lucas numbers
Un (3, 2) : Mersenne numbers 2n − 1
Vn (3, 2) : Numbers of the form 2n + 1, which include the Fermat numbers [ 2]
Un (6, 1) : The square roots of the square triangular numbers .
Un (x , −1) : Fibonacci polynomials
Vn (x , −1) : Lucas polynomials
Un (2x , 1) : Chebyshev polynomials of second kind
Vn (2x , 1) : Chebyshev polynomials of first kind multiplied by 2
Un (x +1, x ) : Repunits in base x
Vn (x +1, x ) : xn + 1
Some Lucas sequences have entries in the On-Line Encyclopedia of Integer Sequences :
Applications
Lucas sequences are used in probabilistic Lucas pseudoprime tests, which are part of the commonly used Baillie–PSW primality test .
Lucas sequences are used in some primality proof methods, including the Lucas–Lehmer–Riesel test , and the N+1 and hybrid N−1/N+1 methods such as those in Brillhart-Lehmer-Selfridge 1975.[ 4]
LUC is a public-key cryptosystem based on Lucas sequences[ 5] that implements the analogs of ElGamal (LUCELG), Diffie–Hellman (LUCDIF), and RSA (LUCRSA). The encryption of the message in LUC is computed as a term of certain Lucas sequence, instead of using modular exponentiation as in RSA or Diffie–Hellman. However, a paper by Bleichenbacher et al.[ 6] shows that many of the supposed security advantages of LUC over cryptosystems based on modular exponentiation are either not present, or not as substantial as claimed.
Software
Sagemath implements
U
n
{\displaystyle U_{n}}
and
V
n
{\displaystyle V_{n}}
as lucas_number1()
and lucas_number2()
, respectively.[ 7]
See also
Notes
References
Carmichael, R. D. (1913), "On the numerical factors of the arithmetic forms αn ±βn ", Annals of Mathematics , 15 (1/4): 30– 70, doi :10.2307/1967797 , JSTOR 1967797
Lehmer, D. H. (1930). "An extended theory of Lucas' functions". Annals of Mathematics . 31 (3): 419– 448. Bibcode :1930AnMat..31..419L . doi :10.2307/1968235 . JSTOR 1968235 .
Ward, Morgan (1954). "Prime divisors of second order recurring sequences". Duke Math. J . 21 (4): 607– 614. doi :10.1215/S0012-7094-54-02163-8 . hdl :10338.dmlcz/137477 . MR 0064073 .
Somer, Lawrence (1980). "The divisibility properties of primary Lucas Recurrences with respect to primes" (PDF) . Fibonacci Quarterly . 18 (4): 316– 334. doi :10.1080/00150517.1980.12430140 .
Lagarias, J. C. (1985). "The set of primes dividing Lucas Numbers has density 2/3". Pac. J. Math . 118 (2): 449– 461. CiteSeerX 10.1.1.174.660 . doi :10.2140/pjm.1985.118.449 . MR 0789184 .
Hans Riesel (1994). Prime Numbers and Computer Methods for Factorization . Progress in Mathematics. Vol. 126 (2nd ed.). Birkhäuser. pp. 107– 121. ISBN 0-8176-3743-5 .
Ribenboim, Paulo; McDaniel, Wayne L. (1996). "The square terms in Lucas Sequences" . J. Number Theory . 58 (1): 104– 123. doi :10.1006/jnth.1996.0068 .
Joye, M.; Quisquater, J.-J. (1996). "Efficient computation of full Lucas sequences" (PDF) . Electronics Letters . 32 (6): 537– 538. Bibcode :1996ElL....32..537J . doi :10.1049/el:19960359 . Archived from the original (PDF) on 2015-02-02.
Ribenboim, Paulo (1996). The New Book of Prime Number Records (eBook ed.). Springer-Verlag , New York. doi :10.1007/978-1-4612-0759-7 . ISBN 978-1-4612-0759-7 .
Ribenboim, Paulo (2000). My Numbers, My Friends: Popular Lectures on Number Theory . New York: Springer-Verlag . pp. 1– 50. ISBN 0-387-98911-0 .
Luca, Florian (2000). "Perfect Fibonacci and Lucas numbers". Rend. Circ Matem. Palermo . 49 (2): 313– 318. doi :10.1007/BF02904236 . S2CID 121789033 .
Yabuta, M. (2001). "A simple proof of Carmichael's theorem on primitive divisors" (PDF) . Fibonacci Quarterly . 39 (5): 439– 443. doi :10.1080/00150517.2001.12428701 .
Benjamin, Arthur T. ; Quinn, Jennifer J. (2003). Proofs that Really Count: The Art of Combinatorial Proof . Dolciani Mathematical Expositions. Vol. 27. Mathematical Association of America . p. 35 . ISBN 978-0-88385-333-7 .
Lucas sequence at Encyclopedia of Mathematics .
Weisstein, Eric W. "Lucas Sequence" . MathWorld .
Wei Dai . "Lucas Sequences in Cryptography" .