This article summarizes equations used in optics , including geometric optics , physical optics , radiometry , diffraction , and interferometry .
Definitions
Geometric optics (luminal rays)
General fundamental quantities
Quantity (common name/s)
(Common) symbol/s
SI units
Dimension
Object distance
x, s, d, u, x 1 , s 1 , d 1 , u 1
m
[L]
Image distance
x', s', d', v, x 2 , s 2 , d 2 , v 2
m
[L]
Object height
y, h, y 1 , h 1
m
[L]
Image height
y', h', H, y 2 , h 2 , H 2
m
[L]
Angle subtended by object
θ, θo , θ 1
rad
dimensionless
Angle subtended by image
θ', θi , θ 2
rad
dimensionless
Curvature radius of lens/mirror
r, R
m
[L]
Focal length
f
m
[L]
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Lens power
P
P
=
1
/
f
{\displaystyle P=1/f\,\!}
m−1 = D (dioptre)
[L]−1
Lateral magnification
m
m
=
−
x
2
/
x
1
=
y
2
/
y
1
{\displaystyle m=-x_{2}/x_{1}=y_{2}/y_{1}\,\!}
dimensionless
dimensionless
Angular magnification
m
m
=
θ
2
/
θ
1
{\displaystyle m=\theta _{2}/\theta _{1}\,\!}
dimensionless
dimensionless
Physical optics (EM luminal waves)
There are different forms of the Poynting vector , the most common are in terms of the E and B or E and H fields.
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Poynting vector
S , N
N
=
1
μ
0
E
×
B
=
E
×
H
{\displaystyle \mathbf {N} ={\frac {1}{\mu _{0}}}\mathbf {E} \times \mathbf {B} =\mathbf {E} \times \mathbf {H} \,\!}
W m−2
[M][T]−3
Poynting flux, EM field power flow
ΦS , ΦN
Φ
N
=
∫
S
N
⋅
d
S
{\displaystyle \Phi _{N}=\int _{S}\mathbf {N} \cdot \mathrm {d} \mathbf {S} \,\!}
W
[M][L]2 [T]−3
RMS Electric field of Light
E rms
E
r
m
s
=
⟨
E
2
⟩
=
E
/
2
{\displaystyle E_{\mathrm {rms} }={\sqrt {\langle E^{2}\rangle }}=E/{\sqrt {2}}\,\!}
N C−1 = V m−1
[M][L][T]−3 [I]−1
Radiation momentum
p, pEM , pr
p
E
M
=
U
/
c
{\displaystyle p_{EM}=U/c\,\!}
J s m−1
[M][L][T]−1
Radiation pressure
Pr , pr , PEM
P
E
M
=
I
/
c
=
p
E
M
/
A
t
{\displaystyle P_{EM}=I/c=p_{EM}/At\,\!}
W m−2
[M][T]−3
Radiometry
Visulization of flux through differential area and solid angle. As always
n
^
{\displaystyle \mathbf {\hat {n}} \,\!}
is the unit normal to the incident surface A,
d
A
=
n
^
d
A
{\displaystyle \mathrm {d} \mathbf {A} =\mathbf {\hat {n}} \mathrm {d} A\,\!}
, and
e
^
∠
{\displaystyle \mathbf {\hat {e}} _{\angle }\,\!}
is a unit vector in the direction of incident flux on the area element, θ is the angle between them. The factor
n
^
⋅
e
^
∠
d
A
=
e
^
∠
⋅
d
A
=
cos
θ
d
A
{\displaystyle \mathbf {\hat {n}} \cdot \mathbf {\hat {e}} _{\angle }\mathrm {d} A=\mathbf {\hat {e}} _{\angle }\cdot \mathrm {d} \mathbf {A} =\cos \theta \mathrm {d} A\,\!}
arises when the flux is not normal to the surface element, so the area normal to the flux is reduced.
For spectral quantities two definitions are in use to refer to the same quantity, in terms of frequency or wavelength.
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Radiant energy
Q, E, Qe , Ee
J
[M][L]2 [T]−2
Radiant exposure
He
H
e
=
d
Q
/
(
e
^
∠
⋅
d
A
)
{\displaystyle H_{e}=\mathrm {d} Q/\left(\mathbf {\hat {e}} _{\angle }\cdot \mathrm {d} \mathbf {A} \right)\,\!}
J m−2
[M][T]−3
Radiant energy density
ωe
ω
e
=
d
Q
/
d
V
{\displaystyle \omega _{e}=\mathrm {d} Q/\mathrm {d} V\,\!}
J m−3
[M][L]−3
Radiant flux , radiant power
Φ, Φe
Q
=
∫
Φ
d
t
{\displaystyle Q=\int \Phi \mathrm {d} t}
W
[M][L]2 [T]−3
Radiant intensity
I, Ie
Φ
=
I
d
Ω
{\displaystyle \Phi =I\mathrm {d} \Omega \,\!}
W sr−1
[M][L]2 [T]−3
Radiance , intensity
L, Le
Φ
=
∬
L
(
e
^
∠
⋅
d
A
)
d
Ω
{\displaystyle \Phi =\iint L\left(\mathbf {\hat {e}} _{\angle }\cdot \mathrm {d} \mathbf {A} \right)\mathrm {d} \Omega }
W sr−1 m−2
[M][T]−3
Irradiance
E, I, Ee , Ie
Φ
=
∫
E
(
e
^
∠
⋅
d
A
)
{\displaystyle \Phi =\int E\left(\mathbf {\hat {e}} _{\angle }\cdot \mathrm {d} \mathbf {A} \right)}
W m−2
[M][T]−3
Radiant exitance , radiant emittance
M, Me
Φ
=
∫
M
(
e
^
∠
⋅
d
A
)
{\displaystyle \Phi =\int M\left(\mathbf {\hat {e}} _{\angle }\cdot \mathrm {d} \mathbf {A} \right)}
W m−2
[M][T]−3
Radiosity
J, Jν , Je, Jeν
J
=
E
+
M
{\displaystyle J=E+M\,\!}
W m−2
[M][T]−3
Spectral radiant flux, spectral radiant power
Φλ , Φν , Φeλ , Φeν
Q
=
∬
Φ
λ
d
λ
d
t
{\displaystyle Q=\iint \Phi _{\lambda }{\mathrm {d} \lambda \mathrm {d} t}}
Q
=
∬
Φ
ν
d
ν
d
t
{\displaystyle Q=\iint \Phi _{\nu }\mathrm {d} \nu \mathrm {d} t}
W m−1 (Φ λ ) W Hz−1 = J (Φ ν )
[M][L]−3 [T]−3 (Φ λ ) [M][L]−2 [T]−2 (Φ ν )
Spectral radiant intensity
Iλ , Iν , Ieλ , Ieν
Φ
=
∬
I
λ
d
λ
d
Ω
{\displaystyle \Phi =\iint I_{\lambda }\mathrm {d} \lambda \mathrm {d} \Omega }
Φ
=
∬
I
ν
d
ν
d
Ω
{\displaystyle \Phi =\iint I_{\nu }\mathrm {d} \nu \mathrm {d} \Omega }
W sr−1 m−1 (Iλ ) W sr−1 Hz−1 (Iν )
[M][L]−3 [T]−3 (Iλ ) [M][L]2 [T]−2 (Iν )
Spectral radiance
Lλ , Lν , Leλ , Leν
Φ
=
∭
L
λ
d
λ
(
e
^
∠
⋅
d
A
)
d
Ω
{\displaystyle \Phi =\iiint L_{\lambda }\mathrm {d} \lambda \left(\mathbf {\hat {e}} _{\angle }\cdot \mathrm {d} \mathbf {A} \right)\mathrm {d} \Omega }
Φ
=
∭
L
ν
d
ν
(
e
^
∠
⋅
d
A
)
d
Ω
{\displaystyle \Phi =\iiint L_{\nu }\mathrm {d} \nu \left(\mathbf {\hat {e}} _{\angle }\cdot \mathrm {d} \mathbf {A} \right)\mathrm {d} \Omega \,\!}
W sr−1 m−3 (L λ ) W sr−1 m−2 Hz−1 (L ν )
[M][L]−1 [T]−3 (L λ ) [M][L]−2 [T]−2 (L ν )
Spectral irradiance
Eλ , Eν , Eeλ , Eeν
Φ
=
∬
E
λ
d
λ
(
e
^
∠
⋅
d
A
)
{\displaystyle \Phi =\iint E_{\lambda }\mathrm {d} \lambda \left(\mathbf {\hat {e}} _{\angle }\cdot \mathrm {d} \mathbf {A} \right)}
Φ
=
∬
E
ν
d
ν
(
e
^
∠
⋅
d
A
)
{\displaystyle \Phi =\iint E_{\nu }\mathrm {d} \nu \left(\mathbf {\hat {e}} _{\angle }\cdot \mathrm {d} \mathbf {A} \right)}
W m−3 (E λ ) W m−2 Hz−1 (E ν )
[M][L]−1 [T]−3 (E λ ) [M][L]−2 [T]−2 (E ν )
Equations
Luminal electromagnetic waves
Physical situation
Nomenclature
Equations
Energy density in an EM wave
⟨
u
⟩
{\displaystyle \langle u\rangle \,\!}
= mean energy density
For a dielectric:
⟨
u
⟩
=
1
2
(
ε
E
2
+
B
2
μ
)
{\displaystyle \langle u\rangle ={\frac {1}{2}}\left(\varepsilon \mathbf {E} ^{2}+{\mathbf {B} ^{2} \over \mu }\right)\,\!}
Kinetic and potential momenta (non-standard terms in use)
Potential momentum:
p
p
=
q
A
{\displaystyle \mathbf {p} _{\mathrm {p} }=q\mathbf {A} \,\!}
Kinetic momentum:
p
k
=
m
v
{\displaystyle \mathbf {p} _{\mathrm {k} }=m\mathbf {v} \,\!}
Canonical momentum:
p
=
m
v
+
q
A
{\displaystyle \mathbf {p} =m\mathbf {v} +q\mathbf {A} \,\!}
Irradiance , light intensity
⟨
S
⟩
{\displaystyle \langle \mathbf {S} \rangle \,\!}
= time averaged poynting vector
I = irradiance
I 0 = intensity of source
P 0 = power of point source
Ω = solid angle
r = radial position from source
I
=
⟨
S
⟩
=
E
r
m
s
2
/
c
μ
0
{\displaystyle I=\langle \mathbf {S} \rangle =E_{\mathrm {rms} }^{2}/c\mu _{0}\,\!}
At a spherical surface:
I
=
P
0
Ω
|
r
|
2
{\displaystyle I={\frac {P_{0}}{\Omega \left|r\right|^{2}}}\,\!}
Doppler effect for light (relativistic)
λ
=
λ
0
c
−
v
c
+
v
{\displaystyle \lambda =\lambda _{0}{\sqrt {\frac {c-v}{c+v}}}\,\!}
v
=
|
Δ
λ
|
c
/
λ
0
{\displaystyle v=|\Delta \lambda |c/\lambda _{0}\,\!}
Cherenkov radiation , cone angle
cos
θ
=
c
n
v
=
1
v
ε
μ
{\displaystyle \cos \theta ={\frac {c}{nv}}={\frac {1}{v{\sqrt {\varepsilon \mu }}}}\,\!}
Electric and magnetic amplitudes
E = electric field
H = magnetic field strength
For a dielectric
|
E
|
=
ε
μ
|
H
|
{\displaystyle \left|\mathbf {E} \right|={\sqrt {\varepsilon \over \mu }}\left|\mathbf {H} \right|\,\!}
EM wave components
Electric
E
=
E
0
sin
(
k
x
−
ω
t
)
{\displaystyle \mathbf {E} =\mathbf {E} _{0}\sin(kx-\omega t)\,\!}
Magnetic
B
=
B
0
sin
(
k
x
−
ω
t
)
{\displaystyle \mathbf {B} =\mathbf {B} _{0}\sin(kx-\omega t)\,\!}
Geometric optics
Subscripts 1 and 2 refer to initial and final optical media respectively.
These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
n
1
n
2
=
v
2
v
1
=
λ
2
λ
1
=
ε
1
μ
1
ε
2
μ
2
{\displaystyle {\frac {n_{1}}{n_{2}}}={\frac {v_{2}}{v_{1}}}={\frac {\lambda _{2}}{\lambda _{1}}}={\sqrt {\frac {\varepsilon _{1}\mu _{1}}{\varepsilon _{2}\mu _{2}}}}\,\!}
where:
Polarization
Physical situation
Nomenclature
Equations
Angle of total polarisation
θB = Reflective polarization angle, Brewster's angle
tan
θ
B
=
n
2
/
n
1
{\displaystyle \tan \theta _{B}=n_{2}/n_{1}\,\!}
intensity from polarized light, Malus's law
I 0 = Initial intensity,
I = Transmitted intensity,
θ = Polarization angle between polarizer transmission axes and electric field vector
I
=
I
0
cos
2
θ
{\displaystyle I=I_{0}\cos ^{2}\theta \,\!}
Diffraction and interference
Property or effect
Nomenclature
Equation
Thin film in air
n 1 = refractive index of initial medium (before film interference)
n 2 = refractive index of final medium (after film interference)
Min:
N
λ
/
n
2
{\displaystyle N\lambda /n_{2}\,\!}
Max:
2
L
=
(
N
+
1
/
2
)
λ
/
n
2
{\displaystyle 2L=(N+1/2)\lambda /n_{2}\,\!}
The grating equation
a = width of aperture, slit width
α = incident angle to the normal of the grating plane
δ
2
π
λ
=
a
(
sin
θ
+
sin
α
)
{\displaystyle {\frac {\delta }{2\pi }}\lambda =a\left(\sin \theta +\sin \alpha \right)\,\!}
Rayleigh's criterion
θ
R
=
1.22
λ
/
d
{\displaystyle \theta _{R}=1.22\lambda /\,\!d}
Bragg's law (solid state diffraction)
d = lattice spacing
δ = phase difference between two waves
δ
2
π
λ
=
2
d
sin
θ
{\displaystyle {\frac {\delta }{2\pi }}\lambda =2d\sin \theta \,\!}
For constructive interference:
δ
/
2
π
=
n
{\displaystyle \delta /2\pi =n\,\!}
For destructive interference:
δ
/
2
π
=
n
/
2
{\displaystyle \delta /2\pi =n/2\,\!}
where
n
∈
N
{\displaystyle n\in \mathbf {N} \,\!}
Single slit diffraction intensity
I 0 = source intensity
Wave phase through apertures
ϕ
=
2
π
a
λ
sin
θ
{\displaystyle \phi ={\frac {2\pi a}{\lambda }}\sin \theta \,\!}
I
=
I
0
[
sin
(
ϕ
/
2
)
(
ϕ
/
2
)
]
2
{\displaystyle I=I_{0}\left[{\frac {\sin \left(\phi /2\right)}{\left(\phi /2\right)}}\right]^{2}\,\!}
N -slit diffraction (N ≥ 2)
d = centre-to-centre separation of slits
N = number of slits
Phase between N waves emerging from each slit
δ
=
2
π
d
λ
sin
θ
{\displaystyle \delta ={\frac {2\pi d}{\lambda }}\sin \theta \,\!}
I
=
I
0
[
sin
(
N
δ
/
2
)
sin
(
δ
/
2
)
]
2
{\displaystyle I=I_{0}\left[{\frac {\sin \left(N\delta /2\right)}{\sin \left(\delta /2\right)}}\right]^{2}\,\!}
N -slit diffraction (all N )
I
=
I
0
[
sin
(
ϕ
/
2
)
(
ϕ
/
2
)
sin
(
N
δ
/
2
)
sin
(
δ
/
2
)
]
2
{\displaystyle I=I_{0}\left[{\frac {\sin \left(\phi /2\right)}{\left(\phi /2\right)}}{\frac {\sin \left(N\delta /2\right)}{\sin \left(\delta /2\right)}}\right]^{2}\,\!}
Circular aperture intensity
I
=
I
0
(
2
J
1
(
k
a
sin
θ
)
k
a
sin
θ
)
2
{\displaystyle I=I_{0}\left({\frac {2J_{1}(ka\sin \theta )}{ka\sin \theta }}\right)^{2}}
Amplitude for a general planar aperture
Cartesian and spherical polar coordinates are used, xy plane contains aperture
A , amplitude at position r
r' = source point in the aperture
E inc , magnitude of incident electric field at aperture
Near-field (Fresnel)
A
(
r
)
∝
∬
a
p
e
r
t
u
r
e
E
i
n
c
(
r
′
)
e
i
k
|
r
−
r
′
|
4
π
|
r
−
r
′
|
d
x
′
d
y
′
{\displaystyle A\left(\mathbf {r} \right)\propto \iint _{\mathrm {aperture} }E_{\mathrm {inc} }\left(\mathbf {r} '\right)~{\frac {e^{ik\left|\mathbf {r} -\mathbf {r} '\right|}}{4\pi \left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} x'\mathrm {d} y'}
Far-field (Fraunhofer)
A
(
r
)
∝
e
i
k
r
4
π
r
∬
a
p
e
r
t
u
r
e
E
i
n
c
(
r
′
)
e
−
i
k
[
sin
θ
(
cos
ϕ
x
′
+
sin
ϕ
y
′
)
]
d
x
′
d
y
′
{\displaystyle A\left(\mathbf {r} \right)\propto {\frac {e^{ikr}}{4\pi r}}\iint _{\mathrm {aperture} }E_{\mathrm {inc} }\left(\mathbf {r} '\right)e^{-ik\left[\sin \theta \left(\cos \phi x'+\sin \phi y'\right)\right]}\mathrm {d} x'\mathrm {d} y'}
Huygens–Fresnel–Kirchhoff principle
r 0 = position from source to aperture, incident on it
r = position from aperture diffracted from it to a point
α0 = incident angle with respect to the normal, from source to aperture
α = diffracted angle, from aperture to a point
S = imaginary surface bounded by aperture
n
^
{\displaystyle \mathbf {\hat {n}} \,\!}
= unit normal vector to the aperture
r
0
⋅
n
^
=
|
r
0
|
cos
α
0
{\displaystyle \mathbf {r} _{0}\cdot \mathbf {\hat {n}} =\left|\mathbf {r} _{0}\right|\cos \alpha _{0}\,\!}
r
⋅
n
^
=
|
r
|
cos
α
{\displaystyle \mathbf {r} \cdot \mathbf {\hat {n}} =\left|\mathbf {r} \right|\cos \alpha \,\!}
|
r
|
|
r
0
|
≪
λ
{\displaystyle \left|\mathbf {r} \right|\left|\mathbf {r} _{0}\right|\ll \lambda \,\!}
A
(
r
)
=
−
i
2
λ
∬
a
p
e
r
t
u
r
e
e
i
k
⋅
(
r
+
r
0
)
|
r
|
|
r
0
|
[
cos
α
0
−
cos
α
]
d
S
{\displaystyle A\mathbf {(} \mathbf {r} )={\frac {-i}{2\lambda }}\iint _{\mathrm {aperture} }{\frac {e^{i\mathbf {k} \cdot \left(\mathbf {r} +\mathbf {r} _{0}\right)}}{\left|\mathbf {r} \right|\left|\mathbf {r} _{0}\right|}}\left[\cos \alpha _{0}-\cos \alpha \right]\mathrm {d} S\,\!}
Kirchhoff's diffraction formula
A
(
r
)
=
−
1
4
π
∬
a
p
e
r
t
u
r
e
e
i
k
⋅
r
0
|
r
0
|
[
i
|
k
|
U
0
(
r
0
)
cos
α
+
∂
A
0
(
r
0
)
∂
n
]
d
S
{\displaystyle A\left(\mathbf {r} \right)=-{\frac {1}{4\pi }}\iint _{\mathrm {aperture} }{\frac {e^{i\mathbf {k} \cdot \mathbf {r} _{0}}}{\left|\mathbf {r} _{0}\right|}}\left[i\left|\mathbf {k} \right|U_{0}\left(\mathbf {r} _{0}\right)\cos {\alpha }+{\frac {\partial A_{0}\left(\mathbf {r} _{0}\right)}{\partial n}}\right]\mathrm {d} S}
Astrophysics definitions
In astrophysics, L is used for luminosity (energy per unit time, equivalent to power ) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.
See also
Sources
Further reading