Lie algebra representation

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

The notion is closely related to that of a representation of a Lie group. Roughly speaking, the representations of Lie algebras are the differentiated form of representations of Lie groups, while the representations of the universal cover of a Lie group are the integrated form of the representations of its Lie algebra.

In the study of representations of a Lie algebra, a particular ring, called the universal enveloping algebra, associated with the Lie algebra plays an important role. The universality of this ring says that the category of representations of a Lie algebra is the same as the category of modules over its enveloping algebra.

Formal definition

Let be a Lie algebra and let be a vector space. We let denote the space of endomorphisms of , that is, the space of all linear maps of to itself. We make into a Lie algebra with bracket given by the commutator: for all ρ,σ in . Then a representation of on is a Lie algebra homomorphism

.

Explicitly, this means that should be a linear map and it should satisfy

for all X, Y in . The vector space V, together with the representation ρ, is called a -module. (Many authors abuse terminology and refer to V itself as the representation).

The representation is said to be faithful if it is injective.

One can equivalently define a -module as a vector space V together with a bilinear map such that

for all X,Y in and v in V. This is related to the previous definition by setting Xv = ρ(X)(v).

Examples

Adjoint representations

The most basic example of a Lie algebra representation is the adjoint representation of a Lie algebra on itself:

Indeed, by virtue of the Jacobi identity, is a Lie algebra homomorphism.

Infinitesimal Lie group representations

A Lie algebra representation also arises in nature. If : GH is a homomorphism of (real or complex) Lie groups, and and are the Lie algebras of G and H respectively, then the differential on tangent spaces at the identities is a Lie algebra homomorphism. In particular, for a finite-dimensional vector space V, a representation of Lie groups

determines a Lie algebra homomorphism

from to the Lie algebra of the general linear group GL(V), i.e. the endomorphism algebra of V.

For example, let . Then the differential of at the identity is an element of . Denoting it by one obtains a representation of G on the vector space . This is the adjoint representation of G. Applying the preceding, one gets the Lie algebra representation . It can be shown that , the adjoint representation of .

A partial converse to this statement says that every representation of a finite-dimensional (real or complex) Lie algebra lifts to a unique representation of the associated simply connected Lie group, so that representations of simply-connected Lie groups are in one-to-one correspondence with representations of their Lie algebras.[1]

In quantum physics

In quantum theory, one considers "observables" that are self-adjoint operators on a Hilbert space. The commutation relations among these operators are then an important tool. The angular momentum operators, for example, satisfy the commutation relations

.

Thus, the span of these three operators forms a Lie algebra, which is isomorphic to the Lie algebra so(3) of the rotation group SO(3).[2] Then if is any subspace of the quantum Hilbert space that is invariant under the angular momentum operators, will constitute a representation of the Lie algebra so(3). An understanding of the representation theory of so(3) is of great help in, for example, analyzing Hamiltonians with rotational symmetry, such as the hydrogen atom. Many other interesting Lie algebras (and their representations) arise in other parts of quantum physics. Indeed, the history of representation theory is characterized by rich interactions between mathematics and physics.

Basic concepts

Invariant subspaces and irreducibility

Given a representation of a Lie algebra , we say that a subspace of is invariant if for all and . A nonzero representation is said to be irreducible if the only invariant subspaces are itself and the zero space . The term simple module is also used for an irreducible representation.

Homomorphisms

Let be a Lie algebra. Let V, W be -modules. Then a linear map is a homomorphism of -modules if it is -equivariant; i.e., for any . If f is bijective, are said to be equivalent. Such maps are also referred to as intertwining maps or morphisms.

Similarly, many other constructions from module theory in abstract algebra carry over to this setting: submodule, quotient, subquotient, direct sum, Jordan-Hölder series, etc.

Schur's lemma

A simple but useful tool in studying irreducible representations is Schur's lemma. It has two parts:[3]

  • If V, W are irreducible -modules and is a homomorphism, then is either zero or an isomorphism.
  • If V is an irreducible -module over an algebraically closed field and is a homomorphism, then is a scalar multiple of the identity.

Complete reducibility

Let V be a representation of a Lie algebra . Then V is said to be completely reducible (or semisimple) if it is isomorphic to a direct sum of irreducible representations (cf. semisimple module). If V is finite-dimensional, then V is completely reducible if and only if every invariant subspace of V has an invariant complement. (That is, if W is an invariant subspace, then there is another invariant subspace P such that V is the direct sum of W and P.)

If is a finite-dimensional semisimple Lie algebra over a field of characteristic zero and V is finite-dimensional, then V is semisimple; this is Weyl's complete reducibility theorem.[4] Thus, for semisimple Lie algebras, a classification of irreducible (i.e. simple) representations leads immediately to classification of all representations. For other Lie algebra, which do not have this special property, classifying the irreducible representations may not help much in classifying general representations.

A Lie algebra is said to be reductive if the adjoint representation is semisimple. Certainly, every (finite-dimensional) semisimple Lie algebra is reductive, since every representation of is completely reducible, as we have just noted. In the other direction, the definition of a reductive Lie algebra means that it decomposes as a direct sum of ideals (i.e., invariant subspaces for the adjoint representation) that have no nontrivial sub-ideals. Some of these ideals will be one-dimensional and the rest are simple Lie algebras. Thus, a reductive Lie algebra is a direct sum of a commutative algebra and a semisimple algebra.

Invariants

An element v of V is said to be -invariant if for all . The set of all invariant elements is denoted by .

Basic constructions

Tensor products of representations

If we have two representations of a Lie algebra , with V1 and V2 as their underlying vector spaces, then the tensor product of the representations would have V1V2 as the underlying vector space, with the action of uniquely determined by the assumption that

for all and .

In the language of homomorphisms, this means that we define by the formula

.[5] This is called the Kronecker sum of and , defined in Matrix addition#Kronecker_sum and Kronecker product#Properties, and more specifically in Tensor product of representations.

In the physics literature, the tensor product with the identity operator is often suppressed in the notation, with the formula written as

,

where it is understood that acts on the first factor in the tensor product and acts on the second factor in the tensor product. In the context of representations of the Lie algebra su(2), the tensor product of representations goes under the name "addition of angular momentum." In this context, might, for example, be the orbital angular momentum while is the spin angular momentum.

Dual representations

Let be a Lie algebra and be a representation of . Let be the dual space, that is, the space of linear functionals on . Then we can define a representation by the formula

where for any operator , the transpose operator is defined as the "composition with " operator:

The minus sign in the definition of is needed to ensure that is actually a representation of , in light of the identity

If we work in a basis, then the transpose in the above definition can be interpreted as the ordinary matrix transpose.

Representation on linear maps

Let be -modules, a Lie algebra. Then becomes a -module by setting . In particular, ; that is to say, the -module homomorphisms from to are simply the elements of that are invariant under the just-defined action of on . If we take to be the base field, we recover the action of on given in the previous subsection.

Representation theory of semisimple Lie algebras

See Representation theory of semisimple Lie algebras.

Enveloping algebras

To each Lie algebra over a field k, one can associate a certain ring called the universal enveloping algebra of and denoted . The universal property of the universal enveloping algebra guarantees that every representation of gives rise to a representation of . Conversely, the PBW theorem tells us that sits inside , so that every representation of can be restricted to . Thus, there is a one-to-one correspondence between representations of and those of .

The universal enveloping algebra plays an important role in the representation theory of semisimple Lie algebras, described above. Specifically, the finite-dimensional irreducible representations are constructed as quotients of Verma modules, and Verma modules are constructed as quotients of the universal enveloping algebra.[6]

The construction of is as follows.[7] Let T be the tensor algebra of the vector space . Thus, by definition, and the multiplication on it is given by . Let be the quotient ring of T by the ideal generated by elements of the form

.

There is a natural linear map from into obtained by restricting the quotient map of to degree one piece. The PBW theorem implies that the canonical map is actually injective. Thus, every Lie algebra can be embedded into an associative algebra in such a way that the bracket on is given by in .

If is abelian, then is the symmetric algebra of the vector space .

Since is a module over itself via adjoint representation, the enveloping algebra becomes a -module by extending the adjoint representation. But one can also use the left and right regular representation to make the enveloping algebra a -module; namely, with the notation , the mapping defines a representation of on . The right regular representation is defined similarly.

Induced representation

Let be a finite-dimensional Lie algebra over a field of characteristic zero and a subalgebra. acts on from the right and thus, for any -module W, one can form the left -module . It is a -module denoted by and called the -module induced by W. It satisfies (and is in fact characterized by) the universal property: for any -module E

.

Furthermore, is an exact functor from the category of -modules to the category of -modules. These uses the fact that is a free right module over . In particular, if is simple (resp. absolutely simple), then W is simple (resp. absolutely simple). Here, a -module V is absolutely simple if is simple for any field extension .

The induction is transitive: for any Lie subalgebra and any Lie subalgebra . The induction commutes with restriction: let be subalgebra and an ideal of that is contained in . Set and . Then .

Infinite-dimensional representations and "category O"

Let be a finite-dimensional semisimple Lie algebra over a field of characteristic zero. (in the solvable or nilpotent case, one studies primitive ideals of the enveloping algebra; cf. Dixmier for the definitive account.)

The category of (possibly infinite-dimensional) modules over turns out to be too large especially for homological algebra methods to be useful: it was realized that a smaller subcategory category O is a better place for the representation theory in the semisimple case in zero characteristic. For instance, the category O turned out to be of a right size to formulate the celebrated BGG reciprocity.[citation needed]

(g,K)-module

One of the most important applications of Lie algebra representations is to the representation theory of real reductive Lie groups. The application is based on the idea that if is a Hilbert-space representation of, say, a connected real semisimple linear Lie group G, then it has two natural actions: the complexification and the connected maximal compact subgroup K. The -module structure of allows algebraic especially homological methods to be applied and -module structure allows harmonic analysis to be carried out in a way similar to that on connected compact semisimple Lie groups.

Representation on an algebra

If we have a Lie superalgebra L, then a representation of L on an algebra is a (not necessarily associative) Z2 graded algebra A which is a representation of L as a Z2 graded vector space and in addition, the elements of L acts as derivations/antiderivations on A.

More specifically, if H is a pure element of L and x and y are pure elements of A,

H[xy] = (H[x])y + (−1)xHx(H[y])

Also, if A is unital, then

H[1] = 0

Now, for the case of a representation of a Lie algebra, we simply drop all the gradings and the (−1) to the some power factors.

A Lie (super)algebra is an algebra and it has an adjoint representation of itself. This is a representation on an algebra: the (anti)derivation property is the superJacobi identity.

If a vector space is both an associative algebra and a Lie algebra and the adjoint representation of the Lie algebra on itself is a representation on an algebra (i.e., acts by derivations on the associative algebra structure), then it is a Poisson algebra. The analogous observation for Lie superalgebras gives the notion of a Poisson superalgebra.

See also

Notes

  1. ^ Hall 2015 Theorem 5.6
  2. ^ Hall 2013 Section 17.3
  3. ^ Hall 2015 Theorem 4.29
  4. ^ Dixmier 1977, Theorem 1.6.3
  5. ^ Hall 2015 Section 4.3
  6. ^ Hall 2015 Section 9.5
  7. ^ Jacobson 1962

References

  • Bernstein I.N., Gelfand I.M., Gelfand S.I., "Structure of Representations that are generated by vectors of highest weight," Functional. Anal. Appl. 5 (1971)
  • Dixmier, J. (1977), Enveloping Algebras, Amsterdam, New York, Oxford: North-Holland, ISBN 0-444-11077-1.
  • A. Beilinson and J. Bernstein, "Localisation de g-modules," Comptes Rendus de l'Académie des Sciences, Série I, vol. 292, iss. 1, pp. 15–18, 1981.
  • Bäuerle, G.G.A; de Kerf, E.A. (1990). A. van Groesen; E.M. de Jager (eds.). Finite and infinite dimensional Lie algebras and their application in physics. Studies in mathematical physics. Vol. 1. North-Holland. ISBN 0-444-88776-8.
  • Bäuerle, G.G.A; de Kerf, E.A.; ten Kroode, A.P.E. (1997). A. van Groesen; E.M. de Jager (eds.). Finite and infinite dimensional Lie algebras and their application in physics. Studies in mathematical physics. Vol. 7. North-Holland. ISBN 978-0-444-82836-1 – via ScienceDirect.
  • Fulton, W.; Harris, J. (1991). Representation theory. A first course. Graduate Texts in Mathematics. Vol. 129. New York: Springer-Verlag. ISBN 978-0-387-97495-8. MR 1153249.
  • D. Gaitsgory, Geometric Representation theory, Math 267y, Fall 2005
  • Hall, Brian C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, ISBN 978-1461471158
  • Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3319134666
  • Rossmann, Wulf (2002), Lie Groups - An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics, Oxford Science Publications, ISBN 0-19-859683-9
  • Ryoshi Hotta, Kiyoshi Takeuchi, Toshiyuki Tanisaki, D-modules, perverse sheaves, and representation theory; translated by Kiyoshi Takeuch
  • Humphreys, James (1972), Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9, Springer, ISBN 9781461263982
  • Jacobson, Nathan (1979) [1962]. Lie algebras. Dover. ISBN 978-0-486-63832-4.
  • Garrett Birkhoff; Philip M. Whitman (1949). "Representation of Jordan and Lie Algebras" (PDF). Trans. Amer. Math. Soc. 65: 116–136. doi:10.1090/s0002-9947-1949-0029366-6.
  • Kirillov, A. (2008). An Introduction to Lie Groups and Lie Algebras. Cambridge Studies in Advanced Mathematics. Vol. 113. Cambridge University Press. ISBN 978-0521889698.
  • Knapp, Anthony W. (2001), Representation theory of semisimple groups. An overview based on examples., Princeton Landmarks in Mathematics, Princeton University Press, ISBN 0-691-09089-0 (elementary treatment for SL(2,C))
  • Knapp, Anthony W. (2002), Lie Groups Beyond and Introduction (second ed.), Birkhauser

Further reading

Read other articles:

Questa voce o sezione sull'argomento nazismo non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. SS-JunkerschuleAllg. Abzeichen Schule Bad Tölz Descrizione generaleNazione Germania Servizio Schutzstaffel TipoScuola militare RuoloFormazione di ufficiali e sottufficiali delle SS Battaglie/guerreSeconda guerra…

В Википедии есть статьи о других людях с такой фамилией, см. Панов; Панов, Александр. Александр Николаевич Панов Ректор Дипломатической академии МИД России 1 июля 2006 — 1 декабря 2010 Президент Владимир ПутинДмитрий Медведев Предшественник Юрий Фокин Преемник Евгений Бажа…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

Japanese manga series by Kentaro Miura BerserkFirst tankōbon volume cover, featuring Gutsベルセルク(Beruseruku)GenreDark fantasy[1][2]Epic fantasy[3]Sword and sorcery[4] MangaWritten byKentaro Miura (vol. 1–41)Kouji Mori [ja] (vol. 42–)[a]Illustrated byKentaro Miura (vol. 1–41)Studio Gaga (vol. 42–)[b]Published byHakusenshaEnglish publisherNA: Dark Horse ComicsImprintJets Comics(former)Young Animal Comics(c…

Episode 14 der Reihe Das Traumhotel Titel Sri Lanka Produktionsland Deutschland Österreich Originalsprache Deutsch Länge 90 Minuten Produktions­unternehmen Lisa Filmim Auftrag vonARD/Degeto Regie Otto Retzer Drehbuch Ulrike Münch Hans Münch Produktion Karl Spiehs Musik Michael Hofmann de Boer Kamera Gero Lasnig Schnitt Uschi Erber Premiere 22. Jan. 2010 auf Das Erste Besetzung Christian Kohlund: Markus Winter Saskia Valencia: Nadja Bülow Bernhard Bettermann: Leon Groß Jenny …

「アプリケーション」はこの項目へ転送されています。英語の意味については「wikt:応用」、「wikt:application」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2018年4月) 古い情報を更新する必要があります。(2021年3月)出典…

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府與…

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддійсь…

Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация  Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Основ…

مارك كانتون   معلومات شخصية الميلاد 19 يونيو 1949 (75 سنة)  كوينز  مواطنة الولايات المتحدة  عدد الأولاد 3   إخوة وأخوات نيل كانتون  الحياة العملية المدرسة الأم جامعة كاليفورنيا  المهنة منتج أفلام  المواقع IMDB صفحته على IMDB  تعديل مصدري - تعديل   مارك كانتون (ب…

خط زمني للفروع الأساسية للكنائس المسيحية بحسب العقيدة. تاريخ المسيحية، ويعنى بهذا دراسة تاريخ الديانة المسيحية والكنيسة، منذ يسوع ورسله الإثني عشر حتى أيامنا الحاضرة. والديانة المسيحية هي ديانةٌ توحيدية أقيمت على أساس تعاليم وحياة يسوع. أما الكنيسة بمعناها اللاهوتي والمس…

Creamy dairy food similar to clotted cream This article is about a creamy dairy food. For the surname, see Kaymak (surname). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (March 2021) (Learn how and …

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2024) HD 204313 b تاريخ الاكتشاف 11 أغسطس 2009  وسيلة الاكتشاف تحليل دوبلر الطيفي[6]  رمز الفهرس HD 204313b (فهرس هنري درابر)TIC 99734092b (TESS Input Catalog)  نصف المحور الرئيسي 3.185 و…

Kōraku-en, taman bergaya kaiyū di Okayama. Taman batu Jepang di Ryōan-ji, Kyoto. Taman Jepang (日本庭園code: ja is deprecated , Nihon teien) adalah taman yang dibangun dengan gaya tradisional Jepang. Prinsip dasar taman Jepang adalah miniaturisasi dari lanskap atau pemandangan alam empat musim di Jepang. Elemen dasar seperti batu-batu dan kolam dipakai untuk melambangkan lanskap alam berukuran besar. Selain taman Jepang yang dibuka untuk umum, taman Jepang dibangun di hotel, kuil Buddha, …

Group of Canadian landscape painters (1920–1933) This article is about the group of Canadian artists. For the group of Asian-American artists sometimes called the Group of Seven, see Metcalf Chateau. Frederick Varley, A. Y. Jackson, Lawren Harris, Barker Fairley (not a member), Frank Johnston, Arthur Lismer, and J. E. H. MacDonald. Image ca. 1920, F 1066, Archives of Ontario, I0010313 The Group of Seven, once known as the Algonquin School, was a group of Canadian landscape painters from 1920 t…

Widodo C. Putro Putro pada September 2011Informasi pribadiNama lengkap Widodo Cahyono PutroTanggal lahir 8 November 1970 (umur 53)Tempat lahir Cilacap, IndonesiaTinggi 170 m (557 ft 9 in)Posisi bermain PenyerangInformasi klubKlub saat ini Arema(Pelatih kepala)Karier senior*Tahun Tim Tampil (Gol)1990–1994 Warna Agung ?? (??)1994–1998 Petrokimia Putra (39)1998–2002 Persija Jakarta ?? (15)2002–2004 Petrokimia Putra 25 (15)Tim nasional1991–1999 Indonesia 55 (14)Kepelati…

Сватівський район адміністративно-територіальна одиниця Герб Прапор Район на карті Луганська область Основні дані Країна:  Україна Область: Луганська область Утворений: 19 липня 2020 року Населення: 80 900 осіб (2020)[1] Площа: 5314,1[2] км² Населені пункти та ради Районн…

Cross-country skiing event at the 2022 Winter Olympics Men's 4 × 10 kilometre relayat the XXIV Olympic Winter GamesCross-country skiingVenueKuyangshu Nordic Center and Biathlon Center,ZhangjiakouDate13 FebruaryCompetitors60 from 15 nationsTeams15Winning time1:54:50.7Medalists Aleksey ChervotkinAlexander BolshunovDenis SpitsovSergey Ustiugov  ROC Emil IversenPål GolbergHans Christer HolundJohannes Høsflot Klæbo  Norway Richard JouveHugo LapalusClément ParisseMaurice Manif…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مايو 2023) لي برادبري معلومات شخصية الميلاد 3 يوليو 1975 (49 سنة)  مركز اللعب مهاجم  الجنسية المملكة المتحدة  معلوما…

Infante DinisDuke of Porto, Infante PortugalKelahiran25 November 1999 (umur 24)Lisbon, PortugalWangsaDinasti BraganzaNama lengkapDinis de Santa Maria Miguel Gabriel Rafael Francisco JoãoAyahDuarte Pio, Duke of BraganzaIbuIsabel, Duchess of Braganza Keluarga Kerajaan Portugal Flag of the Kingdom of Portugal (1834-1910) Duarte Pio, Adipati Braganza Isabel, Istri Adipati Braganza Afonso, Pangeran Beira Putri Maria Francisca Pangeran Dinis, Adipati Porto Pangeran Miguel, Adipati Viseu Pangeran…