In mathematics , given a locally Lebesgue integrable function
f
{\displaystyle f}
on
R
k
{\displaystyle \mathbb {R} ^{k}}
, a point
x
{\displaystyle x}
in the domain of
f
{\displaystyle f}
is a Lebesgue point if[ 1]
lim
r
→
0
+
1
λ
(
B
(
x
,
r
)
)
∫
B
(
x
,
r
)
|
f
(
y
)
−
f
(
x
)
|
d
y
=
0.
{\displaystyle \lim _{r\rightarrow 0^{+}}{\frac {1}{\lambda (B(x,r))}}\int _{B(x,r)}\!|f(y)-f(x)|\,\mathrm {d} y=0.}
Here,
B
(
x
,
r
)
{\displaystyle B(x,r)}
is a ball centered at
x
{\displaystyle x}
with radius
r
>
0
{\displaystyle r>0}
, and
λ
(
B
(
x
,
r
)
)
{\displaystyle \lambda (B(x,r))}
is its Lebesgue measure . The Lebesgue points of
f
{\displaystyle f}
are thus points where
f
{\displaystyle f}
does not oscillate too much, in an average sense.[ 2]
The Lebesgue differentiation theorem states that, given any
f
∈
L
1
(
R
k
)
{\displaystyle f\in L^{1}(\mathbb {R} ^{k})}
, almost every
x
{\displaystyle x}
is a Lebesgue point of
f
{\displaystyle f}
.[ 3]
References
^ Bogachev, Vladimir I. (2007), Measure Theory, Volume 1 , Springer, p. 351, ISBN 9783540345145 .
^ Martio, Olli; Ryazanov, Vladimir; Srebro, Uri; Yakubov, Eduard (2008), Moduli in Modern Mapping Theory , Springer Monographs in Mathematics, Springer, p. 105, ISBN 9780387855882 .
^ Giaquinta, Mariano; Modica, Giuseppe (2010), Mathematical Analysis: An Introduction to Functions of Several Variables , Springer, p. 80, ISBN 9780817646127 .