The satellite is made of THA-18N, a tungsten alloy,[6] and houses 92 cube-corner retroreflectors, which are used to track the satellite via laser from stations on Earth. LARES's body has a diameter of about 36.4 centimetres (14.3 in) and a mass of about 387 kilograms (853 lb).[1][7] LARES was inserted in a nearly circular orbit near 1,451 kilometres (902 mi) and an inclination of 69.49 degrees. The satellite is tracked by the International Laser Ranging Service stations.[8]
The LARES satellite is the densest object known orbiting the Earth.[1] The high density helps reduce disturbances from environmental factors such as solar radiation pressure.[citation needed]
Scientific goals
The main scientific target of the LARES mission is the measurement of the Lense–Thirring effect with an accuracy of about 1%, according to principal investigator Ignazio Ciufolini and the LARES scientific team,[9] but the reliability of that estimate is contested.[10]
In contrast, a recent analysis of 3.5 years of laser-ranging data reported a claimed accuracy of about 4%.[11] Critical remarks appeared later in the literature.[12][clarification needed]
A second satellite, LARES 2, was launched into orbit on 13 July 2022 at 13:13:43 UTC on a Vega-C.[14] It was originally due to launch in mid-2021.[15][16] The launch was delayed to mid-2022 due to continuing impacts from the COVID-19 pandemic.[17][18]
LARES 2 may improve the accuracy of the frame-dragging effect measurement to 0.2%.[19] Concerns about the actual possibility of reaching this goal were raised.[20] LARES 2 is made of a nickel alloy instead of a tungsten alloy.[21]
^"LARES". International Laser Ranging Service. Retrieved 28 February 2013. This article incorporates text from this source, which is in the public domain.
^Peat, Chris (29 July 2013). "LARES - Orbit". Heavens-Above. Retrieved 29 July 2013.
Ciufolini, I.; E. Pavlis; A. Paolozzi; J. Ries; R. Koenig; R. Matzner; G. Sindoni; H. Neumayer (2012). "Phenomenology of the Lense-Thirring effect in the solar system: Measurement of frame-dragging with laser ranged satellites". New Astronomy. 17 (3): 341–346. Bibcode:2012NewA...17..341C. doi:10.1016/j.newast.2011.08.003. hdl:11573/442872.
Ciufolini, I.; Paolozzi A.; Pavlis E. C.; Ries J. C.; Koenig R.; Matzner R. A.; Sindoni G. & Neumayer H. (2010). "Gravitomagnetism and Its Measurement with Laser Ranging to the LAGEOS Satellites and GRACE Earth Gravity Models". General Relativity and John Archibald Wheeler. Astrophysics and Space Science Library. Vol. 367. SpringerLink. pp. 371–434. doi:10.1007/978-90-481-3735-0_17. ISBN978-90-481-3734-3.
Ciufolini, I.; Paolozzi A.; Pavlis E. C.; Ries J.; Koenig R.; Sindoni G.; Neumeyer H. (2011). "Testing Gravitational Physics with Satellite Laser Ranging". European Physical Journal Plus. 126 (8): 72. Bibcode:2011EPJP..126...72C. doi:10.1140/epjp/i2011-11072-2. S2CID122205903.
Ciufolini, I.; Pavlis E. C.; Paolozzi A.; Ries J.; Koenig R.; Matzner R.; Sindoni G.; Neumayer K.H. (3 August 2011). "Phenomenology of the Lense-Thirring effect in the Solar System: Measurement of frame-dragging with laser ranged satellites". New Astronomy. 17 (3): 341–346. Bibcode:2012NewA...17..341C. doi:10.1016/j.newast.2011.08.003. hdl:11573/442872.
^Iorio, L. (February 2017). "A comment on " A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth's dragging of inertial frames", by I. Ciufolini et al". The European Physical Journal C. 77 (2): 73. arXiv:1701.06474. Bibcode:2017EPJC...77...73I. doi:10.1140/epjc/s10052-017-4607-1. S2CID118945777.
Launches are separated by dots ( • ), payloads by commas ( , ), multiple names for the same satellite by slashes ( / ). Crewed flights are underlined. Launch failures are marked with the † sign. Payloads deployed from other spacecraft are (enclosed in parentheses).