It solved a more constrained form of Hilbert's thirteenth problem, so the original Hilbert's thirteenth problem is a corollary.[3][4][5] In a sense, they showed that the only true continuous multivariate function is the sum, since every other continuous function can be written using univariate continuous functions and summing.[6]: 180
History
The Kolmogorov–Arnold representation theorem is closely related to Hilbert's 13th problem. In his Paris lecture at the International Congress of Mathematicians in 1900, David Hilbert formulated 23 problems which in his opinion were important for the further development of mathematics.[7] The 13th of these problems dealt with the solution of general equations of higher degrees. It is known that for algebraic equations of degree 4 the solution can be computed by formulae that only contain radicals and arithmetic operations. For higher orders, Galois theory shows us that the solutions of algebraic equations cannot be expressed in terms of basic algebraic operations. It follows from the so called Tschirnhaus transformation that the general algebraic equation
can be translated to the form . The Tschirnhaus transformation is given by a formula containing only radicals and arithmetic operations and transforms. Therefore, the solution of an algebraic equation of degree can be represented as a superposition of functions of two variables if and as a superposition of functions of variables if . For the solution is a superposition of arithmetic operations, radicals, and the solution of the equation .
A further simplification with algebraic transformations seems to be impossible which led to Hilbert's conjecture that "A solution of the general equation of degree 7 cannot be represented as a superposition of continuous functions of two variables". This explains the relation of Hilbert's thirteenth problem to the representation of a higher-dimensional function as superposition of lower-dimensional functions. In this context, it has stimulated many studies in the theory of functions and other related problems by different authors.[8]
Variants
A variant of Kolmogorov's theorem that reduces the number of
outer functions is due to George Lorentz.[9] He showed in 1962 that the outer functions can be replaced by a single function . More precisely, Lorentz proved the existence of functions , , such that
David Sprecher [10] replaced the inner functions by one single inner function with an appropriate shift in its argument. He proved that there exist real values , a continuous function , and a real increasing continuous function with , for , such that
Phillip A. Ostrand [11] generalized the Kolmogorov superposition theorem to compact metric spaces. For let be compact metric spaces of finite dimension and let . Then there exists continuous functions and continuous functions such that any continuous function is representable in the form
Kolmogorov-Arnold representation theorem and its aforementioned variants also hold for discontinuous multivariate functions.[12]
Limitations
The theorem does not hold in general for complex multi-variate functions, as discussed here.[4] Furthermore, the non-smoothness of the inner functions and their "wild behavior" has limited the practical use of the representation,[13] although there is some debate on this.[14]
Here one example is proved. This proof closely follows.[21] A proof for the case of functions depending on two variables is given, as the generalization is immediate.
Let be a continuous function of type , and let be the supremum of it on .
Let be a positive irrational number. Its exact value is irrelevant.
We say that a 5-tuple is a Kolmogorov-Arnold tuple if and only if any there exists a continuous function , such that In the notation, we have the following:
Theorem — The Kolmogorov–Arnold tuples make up an open and dense subset of .
Proof
Fix a . We show that a certain subset is open and dense: There exists continuous such that , and We can assume that with no loss of generality.
By continuity, the set of such 5-tuples is open in . It remains to prove that they are dense.
The key idea is to divide into an overlapping system of small squares, each with a unique address, and define to have the appropriate value at each address.
Grid system
Let . For any , for all large , we can discretize into a continuous function satisfying the following properties:
is constant on each of the intervals .
These values are different rational numbers.
.
This function creates a grid address system on , divided into streets and blocks. The blocks are of form .
Since is continuous on , it is uniformly continuous. Thus, we can take large enough, so that varies by less than on any block.
On each block, has a constant value. The key property is that, because is irrational, and is rational on the blocks, each block has a different value of .
So, given any 5-tuple , we construct such a 5-tuple . These create 5 overlapping grid systems.
Enumerate the blocks as , where is the -th block of the grid system created by . The address of this block is , for any . By adding a small and linearly independent irrational number (the construction is similar to that of the Hamel basis) to each of , we can ensure that every block has a unique address.
By plotting out the entire grid system, one can see that every point in is contained in 3 to 5 blocks, and 2 to 0 streets.
Construction of g
For each block , if on all of then define ; if on all of then define . Now, linearly interpolate between these defined values. It remains to show this construction has the desired properties.
For any , we consider three cases.
If , then by uniform continuity, on every block that contains the point . This means that on 3 to 5 of the blocks, and have an unknown value on 2 to 0 of the streets. Thus, we have givingSimilarly for .
If , then since , we still have
Baire category theorem
Iterating the above construction, then applying the Baire category theorem, we find that the following kind of 5-tuples are open and dense in : There exists a sequence of such that , , etc. This allows their sum to be defined: , which is still continuous and bounded, and it satisfies Since has a countable dense subset, we can apply the Baire category theorem again to obtain the full theorem.
Extensions
The above proof generalizes for -dimensions: Divide the cube into interlocking grid systems, such that each point in the cube is on to blocks, and to streets. Now, since , the above construction works.
Indeed, this is the best possible value.
Theorem(Sternfeld, 1985 [22]) — Let be a compact metric space with , and let be an embedding such that every can be represented as
(Vituškin, 1954)[25] showed that the theorem is false if we require all functions to be continuously differentiable. The theorem remains true if we require all to be 1-Lipschitz continuous.[5]
^Sprecher, David A. (1965). "On the Structure of Continuous Functions of Several Variables". Transactions of the American Mathematical Society. 115: 340–355. doi:10.2307/1994273. JSTOR1994273.
Vladimir Arnold, "On the representation of continuous functions of three variables as superpositions of continuous functions of two variables", Dokl. Akad. Nauk. SSSR 114:4 (1957), pp. 679–681 (in Russian) SpringerLink