Kethoxal, as with other 1,2-dicarbonyl compounds,[5] reacts with nucleic acids. It has high specificity for guanine over other ribonucleotides. In whole RNA, it reacts preferentially with guanine residues that are not involved in hydrogen-bonding.[6][7] It can thus be used to probe the interactions involved with the secondary structure and other binding interactions of RNA[8] and help with nucleic acid sequence analysis. The binding is reversible, which allows the kethoxal to be removed and the original RNA recovered.[citation needed]
^Robert Shapiro; Bertram I. Cohen; Shian-Jan Shiuey; Hans Maurer (1969). "Reaction of guanine with glyoxal, pyruvaldehyde, and kethoxal, and the structure of the acylguanines. Synthesis of N2-alkylguanines". Biochemistry. 8 (1): 238–245. doi:10.1021/bi00829a034. PMID5777326.
^Shapiro, Robert; Hachmann, John (1966). "The Reaction of Guanine Derivatives with 1,2-Dicarbonyl Compounds". Biochemistry. 5 (9): 2799–2807. doi:10.1021/bi00873a004. PMID5961865.
^Litt, Michael; Hancock, Virginia (1967). "Kethoxal—A Potentially Useful Reagent for the Determination of Nucleotide Sequences in Single-Stranded Regions of Transfer Ribonucleic Acid". Biochemistry. 6 (6): 1848–1854. doi:10.1021/bi00858a036. PMID6035923.
^Staehelin, Matthys (1959). "Inactivation of virus nucleic acid with glyoxal derivatives". Biochim. Biophys. Acta. 31 (2): 448–454. doi:10.1016/0006-3002(59)90019-8. PMID13628672.