KIF23

KIF23
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesKIF23, CHO1, KNSL5, MKLP-1, MKLP1, kinesin family member 23, CDAN3A
External IDsOMIM: 605064; MGI: 1919069; HomoloGene: 11491; GeneCards: KIF23; OMA:KIF23 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001281301
NM_004856
NM_138555
NM_001367804
NM_001367805

NM_024245

RefSeq (protein)

NP_001268230
NP_004847
NP_612565
NP_001354733
NP_001354734

NP_077207
NP_001391984
NP_001391985
NP_001391986

Location (UCSC)Chr 15: 69.41 – 69.45 MbChr 9: 61.82 – 61.85 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Kinesin-like protein KIF23 is a protein that in humans is encoded by the KIF23 gene.[5][6]

Function

In cell division

KIF23 (also known as Kinesin-6, CHO1/MKLP1, C. elegans ZEN-4 and Drosophila Pavarotti) is a member of kinesin-like protein family. This family includes microtubule-dependent molecular motors that transport organelles within cells and move chromosomes during cell division. This protein has been shown to cross-bridge antiparallel microtubules and drive microtubule movement in vitro. Alternate splicing of this gene results in two transcript variants encoding two different isoforms, better known as CHO1, the larger isoform and MKLP1, the smaller isoform.[6] KIF23 is a plus-end directed motor protein expressed in mitosis, involved in the formation of the cleavage furrow in late anaphase and in cytokinesis.[5][7][8] KIF23 is part of the centralspindlin complex that includes PRC1, Aurora B and 14-3-3 which cluster together at the spindle midzone to enable anaphase in dividing cells.[9][10][11]

In neurons

In neuronal development KIF23 is involved in the transport of minus-end distal microtubules into dendrites and is expressed exclusively in cell bodies and dendrites.[12][13][14][15][16] Knockdown of KIF23 by antisense oligonucleotides and by siRNA both cause a significant increase in axon length and a decrease in dendritic phenotype in neuroblastoma cells and in rat neurons.[14][15][17] In differentiating neurons, KIF23 restricts the movement of short microtubules into axons by acting as a "brake" against the driving forces of cytoplasmic dynein. As neurons mature, KIF23 drives minus-end distal microtubules into nascent dendrites contributing to the multi-polar orientation of dendritic microtubules and the formation of their short, fat, tapering morphology.[17]

Model for co-regulation of microtubule polarity in axons and dendrites by different mitotic kinesins. During axonal differentiation, forces generated by cytoplasmic dynein drive plus-end-distal microtubules into the axon and nascent dendrites (not shown). (A) Forces generated by kinesin-6 at the cell body oppose the forces generated by cytoplasmic dynein, restricting the transport of plus-end-distal microtubules into the axon. As the neuron matures, kinesin-6 fuels the transport of short microtubules with their minus-end distal into all of the processes except the one designated to remain the axon, thus causing the other processes to differentiate into dendrites. (B) Forces generated by kinesin-12 behave similarly to kinesin-6 with regard to introducing minus-end-distal microtubules into the dendrite, but kinesin-12 is also present in the axon and growth cone, pushing plus-end-distal microtubules back toward the cell body. As a result, kinesin-12 behaves like kinesin-6 with regard to dendrites but produces effects more like kinesin-5 with regard to the axon.

Interactions

KIF23 has been shown to interact with:

Mutation and diseases

KIF23 has been implicated in the formation and proliferation of GL261 gliomas in mouse.[23]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000137807Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000032254Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Nislow C, Lombillo VA, Kuriyama R, McIntosh JR (Nov 1992). "A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles". Nature. 359 (6395): 543–7. Bibcode:1992Natur.359..543N. doi:10.1038/359543a0. PMID 1406973. S2CID 4361579.
  6. ^ a b "Entrez Gene: KIF23 kinesin family member 23".
  7. ^ Hutterer A, Glotzer M, Mishima M (December 2009). "Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody". Curr. Biol. 19 (23): 2043–9. Bibcode:2009CBio...19.2043H. doi:10.1016/j.cub.2009.10.050. PMC 3349232. PMID 19962307.
  8. ^ Hornick JE, Karanjeet K, Collins ES, Hinchcliffe EH (May 2010). "Kinesins to the core: The role of microtubule-based motor proteins in building the mitotic spindle midzone". Semin. Cell Dev. Biol. 21 (3): 290–9. doi:10.1016/j.semcdb.2010.01.017. PMC 3951275. PMID 20109573.
  9. ^ Neef R, Klein UR, Kopajtich R, Barr FA (February 2006). "Cooperation between mitotic kinesins controls the late stages of cytokinesis". Curr. Biol. 16 (3): 301–7. Bibcode:2006CBio...16..301N. doi:10.1016/j.cub.2005.12.030. PMID 16461284.
  10. ^ a b Douglas ME, Davies T, Joseph N, Mishima M (May 2010). "Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis". Curr. Biol. 20 (10): 927–33. Bibcode:2010CBio...20..927D. doi:10.1016/j.cub.2010.03.055. PMC 3348768. PMID 20451386.
  11. ^ Glotzer M (January 2009). "The 3Ms of central spindle assembly: microtubules, motors and MAPs". Nat. Rev. Mol. Cell Biol. 10 (1): 9–20. doi:10.1038/nrm2609. PMC 2789570. PMID 19197328.
  12. ^ Sharp DJ, Kuriyama R, Essner R, Baas PW (October 1997). "Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation". J. Cell Sci. 110 (19): 2373–80. doi:10.1242/jcs.110.19.2373. PMID 9410876.
  13. ^ Sharp DJ, Yu W, Ferhat L, Kuriyama R, Rueger DC, Baas PW (August 1997). "Identification of a microtubule-associated motor protein essential for dendritic differentiation". J. Cell Biol. 138 (4): 833–43. doi:10.1083/jcb.138.4.833. PMC 2138050. PMID 9265650.
  14. ^ a b Yu W, Sharp DJ, Kuriyama R, Mallik P, Baas PW (February 1997). "Inhibition of a mitotic motor compromises the formation of dendrite-like processes from neuroblastoma cells". J. Cell Biol. 136 (3): 659–68. doi:10.1083/jcb.136.3.659. PMC 2134303. PMID 9024695.
  15. ^ a b Yu W, Cook C, Sauter C, Kuriyama R, Kaplan PL, Baas PW (August 2000). "Depletion of a microtubule-associated motor protein induces the loss of dendritic identity". J. Neurosci. 20 (15): 5782–91. doi:10.1523/JNEUROSCI.20-15-05782.2000. PMC 6772545. PMID 10908619.
  16. ^ Xu X, He C, Zhang Z, Chen Y (February 2006). "MKLP1 requires specific domains for its dendritic targeting". J. Cell Sci. 119 (Pt 3): 452–8. doi:10.1242/jcs.02750. PMID 16418225. S2CID 29919060.
  17. ^ a b Lin S, Liu M, Mozgova OI, Yu W, Baas PW (October 2012). "Mitotic motors coregulate microtubule patterns in axons and dendrites". J. Neurosci. 32 (40): 14033–49. doi:10.1523/JNEUROSCI.3070-12.2012. PMC 3482493. PMID 23035110.
  18. ^ Boman AL, Kuai J, Zhu X, Chen J, Kuriyama R, Kahn RA (October 1999). "Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion". Cell Motil. Cytoskeleton. 44 (2): 119–32. doi:10.1002/(SICI)1097-0169(199910)44:2<119::AID-CM4>3.0.CO;2-C. PMID 10506747.
  19. ^ Guse A, Mishima M, Glotzer M (April 2005). "Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis". Curr. Biol. 15 (8): 778–86. Bibcode:2005CBio...15..778G. doi:10.1016/j.cub.2005.03.041. PMID 15854913.
  20. ^ Li J, Wang J, Jiao H, Liao J, Xu X (March 2010). "Cytokinesis and cancer: Polo loves ROCK'n' Rho(A)". J Genet Genomics. 37 (3): 159–72. doi:10.1016/S1673-8527(09)60034-5. PMID 20347825.
  21. ^ Pohl C, Jentsch S (March 2008). "Final stages of cytokinesis and midbody ring formation are controlled by BRUCE". Cell. 132 (5): 832–45. doi:10.1016/j.cell.2008.01.012. PMID 18329369.
  22. ^ Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K (August 2004). "Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation". EMBO J. 23 (16): 3237–48. doi:10.1038/sj.emboj.7600347. PMC 514520. PMID 15297875.
  23. ^ Takahashi S, Fusaki N, Ohta S, Iwahori Y, Iizuka Y, Inagawa K, Kawakami Y, Yoshida K, Toda M (February 2012). "Downregulation of KIF23 suppresses glioma proliferation". J. Neurooncol. 106 (3): 519–29. doi:10.1007/s11060-011-0706-2. PMID 21904957. S2CID 33089132.

Further reading