Kovacs began her independent research career in 1988 when she joined the University of Washington as an assistant professor. She was promoted to associate professor in 1994, then further promoted to full professor in 2001. She was chair of the American Chemical Society Division of Inorganic Chemistry in 2020.[12]
Kovacs' research involves investigations into the role of thiolates in dioxygen chemistry.[13]Non-heme iron enzymes are known to promote biological reactions, but the mechanisms by which cysteinates impact their function are not well understood.[14]
Kovacs is interested in the formation of the oxygen–oxygen bond.[15][16] In nature, it is this oxygen-evolving complex (OEC) that stores solar energy in chemical bonds. By creating a series of small molecule analogues, Kovacs studies the radical coupling mechanism by which MnIV-oxyl radicals attach bridging oxo groups. She also investigates nucleophilic attack of MnV-oxo due to hydroxyl groups on the OEC. The small molecules include nitrogen and sulphur and a particular stereochemistry. Through synthesis of organic molecules with a variety of different molecular frameworks, Kovacs investigates their structure-property relationships and the reactivity of the resulting transition-metal complexes.[17][18] Kovacs has also studied the activity of meta-stable thiolate-ligated manganese peroxo intermediates.[19][20][21]
Selected publications
Her publications include:
Synthetic analogues of cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes (DOI: 10.1021/cr020619e)[22]
Synthetic Models for the Cysteinate-Ligated Non-Heme Iron Enzyme Superoxide Reductase: Observation and Structural Characterization by XAS of an FeIII−OOH Intermediate (DOI: 10.1021/ja012722b)[23]
Understanding how the thiolate sulfur contributes to the function of the non-heme iron enzyme superoxide reductase (DOI: 10.1021/ar600059h)[24]
Personal life
This section is empty. You can help by adding to it. (May 2021)
^Shearer, Jason; Scarrow, Robert C.; Kovacs, Julie A. (2002-10-01). "Synthetic Models for the Cysteinate-Ligated Non-Heme Iron Enzyme Superoxide Reductase: Observation and Structural Characterization by XAS of an FeIII−OOH Intermediate". Journal of the American Chemical Society. 124 (39): 11709–11717. doi:10.1021/ja012722b. ISSN0002-7863. PMID12296737.
^Yan Poon, Penny Chaau; Dedushko, Maksym A.; Sun, Xianru; Yang, Guang; Toledo, Santiago; Hayes, Ellen C.; Johansen, Audra; Piquette, Marc C.; Rees, Julian A.; Stoll, Stefan; Rybak-Akimova, Elena (2019-09-25). "How Metal Ion Lewis Acidity and Steric Properties Influence the Barrier to Dioxygen Binding, Peroxo O–O Bond Cleavage, and Reactivity". Journal of the American Chemical Society. 141 (38): 15046–15057. doi:10.1021/jacs.9b04729. ISSN0002-7863. PMID31480847. S2CID201831519.
^Shearer, Jason; Scarrow, Robert C.; Kovacs, Julie A. (2002). "Synthetic Models for the Cysteinate-Ligated Non-Heme Iron Enzyme Superoxide Reductase: Observation and Structural Characterization by XAS of an Fe III −OOH Intermediate". Journal of the American Chemical Society. 124 (39): 11709–11717. doi:10.1021/ja012722b. ISSN0002-7863. PMID12296737.