In polynomial algebra and field theory , Joubert's theorem states that if
K
{\displaystyle K}
and
L
{\displaystyle L}
are fields ,
L
{\displaystyle L}
is a separable field extension of
K
{\displaystyle K}
of degree 6, and the characteristic of
K
{\displaystyle K}
is not equal to 2, then
L
{\displaystyle L}
is generated over
K
{\displaystyle K}
by some element λ in
L
{\displaystyle L}
, such that the minimal polynomial
p
{\displaystyle p}
of λ has the form
p
(
t
)
{\displaystyle p(t)}
=
t
6
+
c
4
t
4
+
c
2
t
2
+
c
1
t
+
c
0
{\displaystyle t^{6}+c_{4}t^{4}+c_{2}t^{2}+c_{1}t+c_{0}}
, for some constants
c
4
,
c
2
,
c
1
,
c
0
{\displaystyle c_{4},c_{2},c_{1},c_{0}}
in
K
{\displaystyle K}
.[ 1] The theorem is named in honor of Charles Joubert, a French mathematician, lycée professor, and Jesuit priest.[ 2] [ 3] [ 4] [ 5] [ 6]
In 1867 Joubert published his theorem in his paper Sur l'équation du sixième degré in tome 64 of Comptes rendus hebdomadaires des séances de l'Académie des sciences .[ 7] He seems to have made the assumption that the fields involved in the theorem are subfields of the complex field.[ 1]
Using arithmetic properties of hypersurfaces , Daniel F. Coray gave, in 1987, a proof of Joubert's theorem (with the assumption that the characteristic of
K
{\displaystyle K}
is neither 2 nor 3).[ 1] [ 8] In 2006 Hanspeter Kraft [de ] gave a proof of Joubert's theorem[ 9] "based on an enhanced version of Joubert’s argument".[ 1] In 2014 Zinovy Reichstein proved that the condition characteristic(
K
{\displaystyle K}
) ≠ 2 is necessary in general to prove the theorem, but the theorem's conclusion can be proved in the characteristic 2 case with some additional assumptions on
K
{\displaystyle K}
and
L
{\displaystyle L}
.[ 1]
References
^ a b c d e Reichstein, Zinovy (2014). "Joubert's theorem fails in characteristic 2". Comptes Rendus Mathematique . 352 (10): 773– 777. arXiv :1406.7529 . Bibcode :2014CRMat.352..773R . doi :10.1016/j.crma.2014.08.004 . S2CID 1345373 .
^ Société d'agriculture, sciences et arts de la Sarthe (1895). Bulletin de la Société d'agriculture, sciences et arts de la Sarthe . Société d'agriculture, sciences et arts de la Sarthe. pp. 16–.
^ Institut catholique de Paris (1976). Le Livre Du Centenaire . Editions Beauchesne. p. 32.
^ "Joubert" . cosmovisions.com .
^ Goldstein, Catherine (2012). "Les autres de l'un: deux enquêtes prosopographiques sur Charles Hermite". arXiv :1209.5371 [math.HO ]. (See footnote at bottom of page 18.)
^ Catalogue général de la librairie française: 1876-1885, auteurs : I-Z . Nilsson, P. Lamm. 1887. p. 29.
^ "Sur l'équation du sixième degré. Note du P. Joubert, présentée par M. Hermite" . Comptes rendus hebdomadaires des séances de l'Académie des sciences . Série A. tome 64. Paris: 1025– 1029. 1835. (P. Joubert means le Père Joubert.)
^ Coray, Daniel F. (1987). "Cubic hypersurfaces and a result of Hermite". Duke Mathematical Journal . 54 (2): 657– 670. doi :10.1215/S0012-7094-87-05428-7 . ISSN 0012-7094 .
^ Kraft, H. (2006). "A result of Hermite and equations of degree 5 and 6". J. Algebra . 297 (1): 234– 253. arXiv :math/0403323 . doi :10.1016/j.jalgebra.2005.04.015 . MR 2206857 . S2CID 8037344 .