Jones–Dole equation
The Jones–Dole equation, or Jones–Dole expression, is an empirical expression that describes the relationship between the viscosity of a solution and the concentration of solute within the solution (at a fixed temperature and pressure).[1] The Jones–Dole equation is written as[2] where
The Jones–Dole B coefficient[3] is often used to classify ions as either structure-makers (kosmotropes) or structure-breakers (chaotropes) according to their supposed strengthening or weakening of the hydrogen-bond network of water.[4][5] The Jones–Dole expression works well up to about 1 M, but at higher concentrations breaks down, as the viscosity of all solutions increase rapidly at high concentrations. The large increase in viscosity as a function of solute concentration seen in all solutions above about 1 M is the effect of a jamming transition at a high concentration. As a result, the viscosity increases exponentially as a function of concentration and then diverges at a critical concentration. This has been referred to as the "Mayonnaise effect",[6] as the viscosity of mayonnaise (essentially a solution of oil in water) is extremely high because of the jamming of micrometer-scale droplets. References
|