Jeffrey L. Price

Jeffrey Price
Born1958
New York City, New York
Alma materUndergraduate: College of William and Mary
Ph.D.: Johns Hopkins University
Known forCircadian rhythms research
Scientific career
FieldsChronobiology, Neurology, Cognitive Neuroscience
InstitutionsUniversity of Missouri-Kansas City
Member of Society for Research on Biological Rhythms
Academic advisorsMichael W. Young
Websitesbs.umkc.edu

Jeffrey L. Price (born 1958) is an American researcher and author in the fields of circadian rhythms and molecular biology. His chronobiology work with Drosophila melanogaster has led to the discoveries of the circadian genes timeless (tim) and doubletime (dbt), and the doubletime regulators spaghetti (SPAG) and bride of doubletime (BDBT).

Background and education

Price was born in New York City and raised in New Jersey and Virginia.[1] He graduated from the College of William and Mary with a Bachelor of Science degree in biology, and later received his Ph.D. in biology from Johns Hopkins University. He completed his postdoctoral training in Taiwan, Republic of China, and in the lab of Michael Young at Rockefeller University through the Howard Hughes Medical Institute. Price is currently an associate professor in the School of Biological Sciences at University of Missouri-Kansas City, and an associate professor in the department of Neurology and Cognitive Neuroscience at the University of Missouri–Kansas City School of Medicine.[2]

Research interests

Price's research centers around the molecular mechanisms of circadian rhythms, using Drosophila melanogaster as model organisms. He is specifically interested in the role of protein kinases in clock function, and using forward genetics screens Price has contributed to the identification and characterization of many critical elements of the Drosophila circadian clock.

The molecular circadian clock of D. melanogaster can be described as a feedback loop of transcription and translation, in which the proteins CLOCK and CYCLE act as transcriptional activators of the period and timeless genes. Their protein products, PER and TIM, respectively, dimerize and translocate to the nucleus after phosphorylation by DBT. In the nucleus, PER/TIM heterodimers bind to and suppress CLK/CYC heterodimers to inhibit the transcription of period and timeless, resulting in daily oscillations of PER and TIM.[3] DBT is itself regulated by BDBT and SPAG, which stimulate its kinase activity toward PER and increase the cytoplasmic stability of DBT, respectively.

Timeline of selected major research contributions

  • 1994: Identification and characterization of timeless mutant flies
  • 1998: Identification and characterization of double-time mutant flies
  • 2013: Identification and characterization of bride of double-time
  • 2015: Identification of SPAG as a link between the clock and neurodegeneration

Timeless

In 1994, Price, together with Amita Sehgal, identified the timeless gene through forward genetics mutagenesis screens. A mutant Drosophila line was generated displaying arrhythmia in time of eclosion and per mRNA cycling, reliable phase markers for the Drosophila circadian clock.[4] Price and Seghal mapped the mutations to chromosome 2 and termed the novel gene timeless. Leslie Vosshall, one of their collaborators, later noted that tim mutants were unable to localize PER protein to the nucleus, suggesting an interaction between PER and TIM.[5] Price later contributed to the characterization of six mutant tim alleles altering circadian rhythm, providing further evidence for its role in clock function.[6]

Double-time

In 1998, Price, together with Justin Blau and Adrian Rothenfluh, characterized three mutant alleles of another novel clock gene, doubletime, or dbt, through forward genetics mutagenesis screens and mapped the mutations to chromosome 3. The mutations, termed dbt S, dbt L, and dbt P, shortened (dbt S) or lengthened (dbt L) circadian rhythms in Drosophila. Dbt P was lethal to pupae, but Price and Blau noted that mutant strains of Drosophila larvae harboring homozygous dbt P mutations also sustained loss of rhythms in PER and TIM protein levels, as well as constitutive accumulation of PER protein.[7] These results suggested that the normal function of DBT is to reduce the stability of PER protein monomers through phosphorylation status. The identification of double-time provided a crucial explanation for the observed 4-6-hour delay between peak per mRNA levels and peak PER protein levels in the Drosophila clock.

In addition to studying kinase function in D. melanogaster, Price studies the role of protein kinases in vertebrate clocks. Evolutionary analysis has shown DBT has orthologs in the mammalian genome, specifically CK1ε and CK1δ of the Casein kinase 1 family of kinases, suggesting that the mammalian clock may contain kinases with similar function.[8][9] The mammalian clock has since been well characterized, and both CK1ε and CK1δ appear to perform a similar function to DBT, though CK1δ may have a larger effect on clock function.

Bride of Double-time

In 2013, Price's lab identified a noncanonical FK506-binding protein named Bride of Double-time (BDBT), which interacts with DBT protein kinase. In his experiment, RNA interference (RNAi), which reduced BDBT expression, resulted in long periods and arrhythmicity of locomotion, as well as high levels of hypophosphorylated nuclear PER and phosphorylated DBT.[10] These results demonstrated a role for BDBT in the circadian clock. When BDBT was overexpressed, Price found that the phosphorylation and DBT-dependent degradation of PER increased, suggesting that BDBT stimulates DBT circadian activity toward PER.[10] In addition, BDBT was shown to rhythmically accumulate in PER and DBT-dependent cytosolic foci in the fly eye. Price's lab established BDBT as a mediator of DBT's effects on PER, which regulates PER nuclear accumulation in discrete foci In photoreceptors.[10] In 2015, Price's lab noted that DBT proteins lacking a nuclear localization signal (NLS) failed to interact with BDBT, suggesting that this interaction is mediated by the NLS.[11]

Spaghetti

In 2015, Price identified an upstream regulator of DBT named spaghetti, encoding the SPAG protein. SPAG antagonizes DBT autophosphorylation, increasing the stability of DBT during the day by delaying proteasomal degradation. Using RNAi, Price found that SPAG knockdowns in Drosophila caused either an increase in period or arhythmicity, as well as reduction in cellular levels of DBT.[12] SPAG also has a role in neurodegeneration, as flies with reduced SPAG experienced increased levels of activated caspase proteins in the optic lobes, resulting in neurodegeneration through apoptosis when human tau is also expressed in the eye.[12][13]

References

  1. ^ Price, Jeffrey L. E-mail interview. 6 April 2017.
  2. ^ "Faculty Detail: Jeffrey Price, Associate Professor, MBB | Ph.D. Doctoral Faculty." School of Biological Sciences: University of Missouri-Kansas City. Curators of the University of Missouri, n.d. Web. 11 Apr. 2017.[1] Archived 2015-03-16 at the Wayback Machine
  3. ^ Dunlap, JC (1999). "Molecular bases for circadian clocks". Cell. 96 (2): 271–290. doi:10.1016/S0092-8674(00)80566-8. PMID 9988221.
  4. ^ Sehgal A, Price JL, Man B, Young MW (1994). "Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless". Science. 263 (5153): 1603–06. Bibcode:1994Sci...263.1603S. doi:10.1126/science.8128246. PMID 8128246.
  5. ^ Vosshal LB, Price JL, Sehgal A, Saez L, Young MW (1994). "Block in nuclear localization of period protein by a second clock mutation, timeless". Science. 263 (5153): 1606–09. Bibcode:1994Sci...263.1606V. doi:10.1126/science.8128247. PMID 8128247.
  6. ^ Rothenfluh A, Abodeely M, Price JL, Young MW (2000). "Isolation and analysis of six timeless alleles which cause short- or long-period circadian rhythms in Drosophila". Genetics. 156 (2): 665–75. doi:10.1093/genetics/156.2.665. PMC 1461293. PMID 11014814.
  7. ^ Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW (1998). "double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation". Cell. 94 (1): 83–95. doi:10.1016/S0092-8674(00)81224-6. PMID 9674430.
  8. ^ Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW (1998). "The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε". Cell. 94 (1): 97–107. doi:10.1016/S0092-8674(00)81225-8. PMID 9674431.
  9. ^ Fan JY, Preuss F, Muskus MJ, Bjes ES, Price JL (2009). "Drosophila and vertebrate casein kinase 1δ exhibits evolutionary conservation of circadian function". Genetics. 181 (1): 139–152. doi:10.1534/genetics.108.094805. PMC 2621163. PMID 18957703.
  10. ^ a b c Fan, Jin-Yuan; Agyekum, Boadi; Venkatesan, Anandakrishnan; Hall, David R.; Keightley, Andrew; Bjes, Edward S.; Bouyain, Samuel; Price, Jeffrey L. (2013-11-20). "Noncanonical FK506-Binding Protein BDBT Binds DBT to Enhance Its Circadian Function and Forms Foci at Night". Neuron. 80 (4): 984–996. doi:10.1016/j.neuron.2013.08.004. ISSN 0896-6273. PMC 3869642. PMID 24210908.
  11. ^ Venkatesan, Anandakrishnan; Fan, Jin-Yuan; Nauman, Christopher; Price, Jeffrey L. (2015-08-01). "A Doubletime Nuclear Localization Signal Mediates an Interaction with Bride of Doubletime to Promote Circadian Function". Journal of Biological Rhythms. 30 (4): 302–317. doi:10.1177/0748730415588189. ISSN 1552-4531. PMC 5730409. PMID 26082158.
  12. ^ a b Means JC, Venkatesan A, Gerdes B, Fan JY, Bjes ES, Price JL (2015). "Drosophila Spaghetti and Doubletime Link the Circadian Clock and Light to Caspases, Apoptosis and Tauopathy". PLOS Genetics. 11 (5): e1005171. doi:10.1371/journal.pgen.1005171. PMC 4423883. PMID 25951229.
  13. ^ Fan JY, Means JC, Bjes ES, Price JL (2015). "Drosophila DBT autophosphorylation of its C-terminal domain antagonized by SPAG and involved in UV-induced apoptosis". Mol. Cell. Biol. 35 (14): 2414–2424. doi:10.1128/MCB.00390-15. PMC 4475922. PMID 25939385.