Tour's work is primarily focused on carbon materials chemistry and nanotechnology. Tour's work on carbon materials encompasses fullerene purification,[2][3] composites,[4][5] conductive inks for radio frequencies identification tags,[6][7] carbon nanoreporters for identifying oil downhole,[8][9] graphene synthesis from cookies and insects,[10] graphitic electronic devices,[11][12] carbon particle drug delivery for treatment of traumatic brain injury,[13][14] the merging of 2D graphene with 1D nanotubes to make a conjoined hybrid material,[15] a new graphene-nanotube 2D material called rebar graphene,[16] graphene quantum dots from coal,[17] gas barrier composites,[18] graphene nanoribbon deicing films,[19] supercapacitors and battery device structures,[20][21] and water splitting to H2 and O2 using metal chalcogenides.[22]
In addition, Tour has conducted research on the synthesis of graphene oxide,[23][24] its mechanism of formation,[25] and its use in capturing radionuclides from water.[26] Tour has developed oxide-based electronic memories that can also be transparent and built onto flexible substrates.[27] His group has also developed the use of porous metal structures to make renewable energy devices including batteries and supercapacitors, as well as electronic memories.[28]
More recently, the Tour group's discovery of laser-induced graphene (LIG) has spurred innovations including an array of device structures made from LIG foams.[29] His lab's discovery of the flash graphene process in 2019 for the 10-millisecond bulk formation of graphene from carbon sources including coal, petroleum coke, biochar, food waste and mixed plastic waste, has implications in environmental stewardship through materials and waste upcycling.[30]
Tour worked in molecular electronics and molecular switching molecules. He pioneered the development of the Nanocar, single-molecule vehicles with four independently rotating wheels, axles, and light-activated motors.[31] Tour was the first to show that Feringa-based motors[32] can be used to move a molecule on a surface using light[33] as opposed to electric current from an STM tip. His early career focused upon the synthesis of conjugated polymers and precise oligomers.[34]
Tour has also been involved in scientific outreach, such as NanoKids, an interactive learning DVD to teach children fundamentals of chemistry and physics. He also developed SciRave, a Dance Dance Revolution and Guitar Hero package to teach science concepts to middle school and elementary school students. He has testified before the US Congress on two occasions to warn about budget cuts.[35]
Tour is on the board and working with companies including Weebit (silicon oxide electronic memory),[37] Dotz (graphene quantum dots),[38]Zeta Energy (batteries),[39] NeuroCords (spinal cord repair),[40] Xerient (treatment of pancreas cancer), LIGC Application Ltd. (laser-induced graphene),[41] Nanorobotics (molecular nanomachines in medicine),[42] Universal Matter Ltd. (flash graphene synthesis),[43] Roswell Biotechnologies (molecular electronic DNA sequencing),[44] and Rust Patrol (corrosion inhibitors).[45]
Tour's lab's research into graphene scaffolding gel has been shown to repair spinal cords of paralyzed mice.[35]
Tour has about 650 research publications and over 200 patents, with an H-index > 170 with total citations over 130,000 (Google Scholar, as of November 2023).[46][47][48]
Awards
Tour was awarded the Royal Society of Chemistry's Centenary Prize for innovations in materials chemistry with applications in medicine and nanotechnology.[49] Tour was inducted into the National Academy of Inventors in 2015.[50][51][52]
He was named among "The 50 most Influential Scientists in the World Today" by TheBestSchools.org in 2014.[53]
Tour was named "Scientist of the Year" by R&D Magazine in 2013.[54] Tour won the ACS Nano Lectureship Award from the American Chemical Society in 2012. Tour was ranked one of the top 10 chemists in the world over the past decade by Thomson Reuters in 2009.
That year, he was also made a fellow of the American Association for the Advancement of Science.
In 2005, Tour's journal article "Directional Control in Thermally Driven Single-Molecule Nanocars" was ranked the Most Accessed Journal Article by the American Chemical Society.[55]
Tour has twice won the George R. Brown Award for Superior Teaching at Rice University in 2007 and 2012.
Opposition to evolution and origin of life studies
Tour became a born-again Christian in his first year at Syracuse[35] and identifies as a Messianic Jew.[57] Tour signed the Scientific Dissent from Darwinism,[1] a statement issued by the Discovery Institute disputing the scientific consensus on evolution, but, in spite of the Discovery Institute's promotion of the pseudoscience of intelligent design, Tour does not consider himself to be an intelligent design proponent.[58] According to The New Yorker, Tour said his signing of the "Dissent" "reflected only his personal doubts about how random mutation occurs at the molecular level... [and] that, apart from a habit of praying for divine guidance, he feels that religion plays no part in his scientific work."[35]
On May 19, 2023, James Tour debated Dave Farina, science educator and creator of the Professor Dave Explains YouTube channel, at Rice University on abiogenesis. The topic of the debate was "Are we clueless about the origin of life?", with Tour arguing that humanity is clueless.[59]
^Scrivens, W. A.; Tour, J. M. (1992). "Synthesis of Gram Quantities of C60 by Plasma Discharge in a Modified Round-Bottomed Flask. Key Parameters for Yield Optimization and Purification". J. Org. Chem. 1992 (57): 6932–6936. doi:10.1021/jo00051a047.
^Scrivens, W. A.; Bedworth, P. V.; Tour, J. M. (1992). "Purification of Gram Quantities of C60. A New Inexpensive and Facile Method". J. Am. Chem. Soc. 1992 (114): 7917–7919. doi:10.1021/ja00046a051.
^Higginbotham, A. L.; Moloney, P. G.; Waid, M. C.; Duque, J. G.; Kittrell, C.; Schmidt, H. K.; Stephenson, J. J.; Arepalli, S.; Yowell, L. L.; Tour, J. M. (2008). "Carbon Nanotube Composite Curing Through Absorption of Microwave Radiation". Composites Sci. Tech. 68 (15–16): 3087–3092. doi:10.1016/j.compscitech.2008.07.004.
^Mitchell, C. A.; Bahr, J. L.; Arepalli, S.; Tour, J. M.; Krishnamoorti, R. (2002). "Dispersion of Functionalized Carbon Nanotubes in Polystyrene". Macromolecules. 35 (23): 8825–8830. Bibcode:2002MaMol..35.8825M. doi:10.1021/ma020890y.
^Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A.; Pyo, M.; Tour, J. M.; Cho, G. "All Printed and Roll-to-Roll Printable 13.56 MHz Operated 1-bit RF Tag on Plastic Foils," IEEE Trans. Elect. Dev 1 2010, 57, 571-580.
^Noh, J.; Jung, M.; Jung, K.; Lee, G.; Lim, S.; Kim, D.; Kim, S.; Tour, J. M.; Cho, G. (2011). "Integrable single walled carbon nanotube (SWNT) network based thin film transistors using roll-to-roll gravure and inkjet". Org. Electronics. 12 (12): 2185–2191. doi:10.1016/j.orgel.2011.09.006.
^Berlin, J. M.; Yu, J.; Lu, W.; Walsh, E. E.; Zhang, L.; Zhang, P.; Chen, W.; Kan, A. T.; Wong, M. S.; Tomson, M. B.; Tour, J. M. (2011). "Engineered Nanoparticles for Hydrocarbon Detection in Oil-field Rocks". Energy Environ Sci. 2011 (4): 505–509. doi:10.1039/c0ee00237b.
^Hwang, C.-C.; Wang, L.; Lu, W.; Ruan, G.; Kini, G. C.; Xiang, C.; Samuel, E. L. G.; Shi, W.; Kan, A. T.; Wong, M. S.; Tomson, M. B.; Tour, J. M. (2012). "Highly Stable Carbon Nanoparticles Designed for Downhole Hydrocarbon Detection". Energy Environ Sci. 2012 (5): 8304–8309. doi:10.1039/c2ee21574h.
^Ruan, G.; Sun, Z.; Peng, Z.; Tour, J. M. (2011). "Growth of Graphene from Food, Insects, and Waste". ACS Nano. 5 (9): 7601–7607. doi:10.1021/nn202625c. PMID21800842.
^Sinitskii, A.; Tour, J. M. (2009). "Lithographic Graphitic Memories". ACS Nano. 3 (9): 2760–2766. doi:10.1021/nn9006225. PMID19719147.
^Sharpe, M. A.; Marcano, D. C.; Berlin, J. M.; Widmayer, M. A.; Baskin, D. S.; Tour, J. M. (2012). "Antibody-Targeted Nanovectors for the Treatment of Brain Cancers". ACS Nano. 6 (4): 3114–3120. doi:10.1021/nn2048679. PMID22390360.
^Zhang, C.; Peng, Z.; Lin, J.; Zhu, Y. Ruan; Hwang, C.-C.; Lu, W.; Hauge, R. H.; Tour, J. M. (2013). "Splitting of a Vertical Multiwalled Carbon Nanotube Carpet to a Graphene Nanoribbon Carpet and Its Use in Supercapacitors". ACS Nano. 7 (6): 5151–5159. doi:10.1021/nn400750n. PMID23672653.
^Lin, J.; Peng, Z.; Wang, G.; Zakhidov, D.; Larios, E.; Yacaman, M. J.; Tour, J. M. (2014). "Enhanced Electrocatalysis for Hydrogen Evolution Reactions from WS2 Nanoribbons". Advanced Energy Materials. 4 (10): 1301875. Bibcode:2014AdEnM...401875L. doi:10.1002/aenm.201301875. S2CID96788831.
^Dimiev, A. M.; Alemany, L. B.; Tour, J. M. (2013). "Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model". ACS Nano. 7 (1): 576–588. doi:10.1021/nn3047378. PMID23215236.
^Romanchuk, A. Yu.; Slesarev, A. S.; Kalmykov, S. N.; Kosynkin, D. V.; Tour, J. M. (2013). "Graphene Oxide for Effective Radionuclide Removal". Phys. Chem. Chem. Phys. 15 (7): 2321–2327. Bibcode:2013PCCP...15.2321R. doi:10.1039/c2cp44593j. PMID23296256.
^Tour, J. M. (1996). "Conjugated Macromolecules of Precise Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures". Chem. Rev. 1996 (96): 537–553. doi:10.1021/cr9500287. PMID11848764.