The statement of Jacobson–Morozov relies on the following preliminary notions: an sl2-triple in a semi-simple Lie algebra (throughout in this article, over a field of characteristic zero) is a homomorphism of Lie algebras . Equivalently, it is a triple of elements in satisfying the relations
An element is called nilpotent, if the endomorphism (known as the adjoint representation) is a nilpotent endomorphism. It is an elementary fact that for any sl2-triple , e must be nilpotent. The Jacobson–Morozov theorem states that, conversely, any nilpotent non-zero element can be extended to an sl2-triple.[1][2] For , the sl2-triples obtained in this way are made explicit in Chriss & Ginzburg (1997, p. 184).
The theorem can also be stated for linear algebraic groups (again over a field k of characteristic zero): any morphism (of algebraic groups) from the additive group to a reductive groupH factors through the embedding
Furthermore, any two such factorizations
are conjugate by a k-point of H.
Generalization
A far-reaching generalization of the theorem as formulated above can be stated as follows: the inclusion of pro-reductive groups into all linear algebraic groups, where morphisms in both categories are taken up to conjugation by elements in , admits a left adjoint, the so-called pro-reductive envelope. This left adjoint sends the additive group to (which happens to be semi-simple, as opposed to pro-reductive), thereby recovering the above form of Jacobson–Morozov.
This generalized Jacobson–Morozov theorem was proven by André & Kahn (2002, Theorem 19.3.1) by appealing to methods related to Tannakian categories and by O'Sullivan (2010) by more geometric methods.
Chriss, Neil; Ginzburg, Victor (1997), Representation theory and complex geometry, Birkhäuser, ISBN0-8176-3792-3, MR1433132
Bourbaki, Nicolas (2007), Groupes et algèbres de Lie: Chapitres 7 et 8, Springer, ISBN9783540339779
Jacobson, Nathan (1935), "Rational methods in the theory of Lie algebras", Annals of Mathematics, Second Series, 36 (4): 875–881, doi:10.2307/1968593, JSTOR1968593, MR1503258
Jacobson, Nathan (1951), "Completely reducible Lie algebras of linear transformations", Proceedings of the American Mathematical Society, 2: 105–113, doi:10.1090/S0002-9939-1951-0049882-5, MR0049882
Jacobson, Nathan (1979), Lie algebras (Republication of the 1962 original ed.), Dover Publications, Inc., New York, ISBN0-486-63832-4
Morozov, V. V. (1942), "On a nilpotent element in a semi-simple Lie algebra", C. R. (Doklady) Acad. Sci. URSS, New Series, 36: 83–86, MR0007750