The nucleus of IRAS F11119+3257 is active. It has been classified as a narrow-line Seyfert 1 galaxy[3] and has a post-merger morphology. It is also a type-1 quasar, emitting out (LX 10^44 erg/s at z=0.189) with a persistent ultra-fast outflow at v 0.25c, observed with both NuSTAR and Suzaku. IRAS F11119+3257 is said to be the first system which is possible to connect nuclear outflow with a galaxy-scale molecular outflow, observed in hydroxide (OH) and carbon monoxide (CO) transitions.[4] The high-ionization emission lines ([O III], [Ne III], and [Ne V]) are dominated by blueshifted components at similar speeds to the mini-BAL QSOs.[5]
The emission in IRAS F11119+3257, is dominated by its active galactic nucleus (AGN) component.[6] Researchers found that there is direct evidence of a quasar accretion disk driving a massive (>100 M ⊙ yr-1) molecular outflow.[7] They saw that the energetics of the accretion disk wind and molecular outflow are consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conservingbubble, inflated by its inner quasar accretion disk wind, but the conclusion is uncertain. However, they were able to confirm the presence of the molecular outflow in IRAS F11119+3257, based on the detection of ~±1000 km/s blue and redshifted wings in the CO(1–0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (~2.8″ resolution).[7]
With a supermassive black hole mass of Mbh ≈ 2 × 107 M⊙ calibrated for a sample of similar ULIRG sources,[8] the bolometric luminosity for IRAS F11119+3257 is Lb = 5LEdd, where LEdd is the Eddington luminosity, suggesting that the active galactic nucleus is responsible for about 80 per cent of its emission, with a quasar-like luminosity of 1.5 × 1046 ergs per second.[9] From the correlation relation between infrared and radio luminosities for starburst galaxies, the AGN component in IRAS F11119+3257 is found to exceed the starburst contribution.[10] Apart from the molecular outflows, the galaxy hosts a wide-apertureenergeticradiation-driven X-ray emitting winds, suggesting a likely energy conserving quasar-mode feedback.[9][11]
Researchers also found that IRAS F11119+3257 has a relatively bright radio counterpart. The early survey of the BolognaNorthern Cross Radio Telescope (BNCRT) at 408 MHz, conducted by Colla et al. (1970)[12] found there is a half-Jy radio counterpart in the galaxy. Later, it was observed by more radio telescopes at multiple radio frequencies, whom they found IRAS F11119+3257 indicates a compact emission structure.[13] Moreover, its radio spectrum between 0.15 and 96 GHz shows a peak at 0.53 ± 0.06 GHz and a steep slope of ν−1.31±0.02 in the optically thin part.[7]
From the EVN Observation, at 1.66 and 4.93 GHz, IRAS F11119+3257 displays a two-sided jet with a projected separation of about 200 parsec, which has an intrinsicspeed of ≥0.57c. This is higher than that observed in the X-ray winds.[7]