The term 'transcendentally transcendental' was introduced by E. H. Moore in 1896; the term 'hypertranscendental' was introduced by D. D. Morduhai-Boltovskoi in 1914.[1][2]
Definition
One standard definition (there are slight variants) defines solutions of differential equations of the form
,
where is a polynomial with constant coefficients, as algebraically transcendental or differentially algebraic. Transcendental functions which are not algebraically transcendental are transcendentally transcendental. Hölder's theorem shows that the gamma function is in this category.[3][4][5]
^D. D. Mordykhai-Boltovskoi, "On hypertranscendence of the function ξ(x, s)", Izv. Politekh. Inst. Warsaw2:1-16 (1914), cited in Anatoly A. Karatsuba, S. M. Voronin, The Riemann Zeta-Function, 1992, ISBN3-11-013170-6, p. 390
Mahler, K., "Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen", Math. Z. 32 (1930) 545-585.
Morduhaĭ-Boltovskoĭ, D. (1949), "On hypertranscendental functions and hypertranscendental numbers", Doklady Akademii Nauk SSSR, New Series (in Russian), 64: 21–24, MR0028347