Generalized theory of gravity
Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion.[clarification needed ] The theory was first proposed by Gregory Horndeski in 1974[ 1] and has found numerous applications, particularly in the construction of cosmological models of Inflation and dark energy .[ 2] Horndeski's theory contains many theories of gravity, including General relativity , Brans-Dicke theory , Quintessence , Dilaton , Chameleon and covariant Galileon[ 3] as special cases.
Action
Horndeski's theory can be written in terms of an action as[ 4]
S
[
g
μ
ν
,
ϕ
]
=
∫
d
4
x
−
g
[
∑
i
=
2
5
1
8
π
G
N
L
i
[
g
μ
ν
,
ϕ
]
+
L
m
[
g
μ
ν
,
ψ
M
]
]
{\displaystyle S[g_{\mu \nu },\phi ]=\int \mathrm {d} ^{4}x\,{\sqrt {-g}}\left[\sum _{i=2}^{5}{\frac {1}{8\pi G_{\text{N}}}}{\mathcal {L}}_{i}[g_{\mu \nu },\phi ]\,+{\mathcal {L}}_{\text{m}}[g_{\mu \nu },\psi _{M}]\right]}
with the Lagrangian densities
L
2
=
G
2
(
ϕ
,
X
)
{\displaystyle {\mathcal {L}}_{2}=G_{2}(\phi ,\,X)}
L
3
=
G
3
(
ϕ
,
X
)
◻
ϕ
{\displaystyle {\mathcal {L}}_{3}=G_{3}(\phi ,\,X)\Box \phi }
L
4
=
G
4
(
ϕ
,
X
)
R
+
G
4
,
X
(
ϕ
,
X
)
[
(
◻
ϕ
)
2
−
ϕ
;
μ
ν
ϕ
;
μ
ν
]
{\displaystyle {\mathcal {L}}_{4}=G_{4}(\phi ,\,X)R+G_{4,X}(\phi ,\,X)\left[\left(\Box \phi \right)^{2}-\phi _{;\mu \nu }\phi ^{;\mu \nu }\right]}
L
5
=
G
5
(
ϕ
,
X
)
G
μ
ν
ϕ
;
μ
ν
−
1
6
G
5
,
X
(
ϕ
,
X
)
[
(
◻
ϕ
)
3
+
2
ϕ
;
μ
ν
ϕ
;
ν
α
ϕ
;
α
μ
−
3
ϕ
;
μ
ν
ϕ
;
μ
ν
◻
ϕ
]
{\displaystyle {\mathcal {L}}_{5}=G_{5}(\phi ,\,X)G_{\mu \nu }\phi ^{;\mu \nu }-{\frac {1}{6}}G_{5,X}(\phi ,\,X)\left[\left(\Box \phi \right)^{3}+2{\phi _{;\mu }}^{\nu }{\phi _{;\nu }}^{\alpha }{\phi _{;\alpha }}^{\mu }-3\phi _{;\mu \nu }\phi ^{;\mu \nu }\Box \phi \right]}
Here
G
N
{\displaystyle G_{N}}
is Newton's constant ,
L
m
{\displaystyle {\mathcal {L}}_{m}}
represents the matter Lagrangian,
G
2
{\displaystyle G_{2}}
to
G
5
{\displaystyle G_{5}}
are generic functions of
ϕ
{\displaystyle \phi }
and
X
{\displaystyle X}
,
R
,
G
μ
ν
{\displaystyle R,G_{\mu \nu }}
are the Ricci scalar and Einstein tensor ,
g
μ
ν
{\displaystyle g_{\mu \nu }}
is the Jordan frame metric, semicolon indicates covariant derivatives , commas indicate partial derivatives ,
◻
ϕ
≡
g
μ
ν
ϕ
;
μ
ν
{\displaystyle \Box \phi \equiv g^{\mu \nu }\phi _{;\mu \nu }}
,
X
≡
−
1
/
2
g
μ
ν
ϕ
;
μ
ϕ
;
ν
{\displaystyle X\equiv -1/2g^{\mu \nu }\phi _{;\mu }\phi _{;\nu }}
and repeated indices are summed over following Einstein's convention .
Constraints on parameters
Many of the free parameters of the theory have been constrained,
L
1
{\displaystyle {\mathcal {L}}_{1}}
from the coupling of the scalar field to the top field and
L
2
{\displaystyle {\mathcal {L}}_{2}}
via coupling to jets down to low coupling values with proton collisions at the ATLAS experiment .[ 5]
L
4
{\displaystyle {\mathcal {L}}_{4}}
and
L
5
{\displaystyle {\mathcal {L}}_{5}}
, are strongly constrained by the direct measurement of the speed of gravitational waves following GW170817 .[ 6] [ 7] [ 8] [ 9] [ 10] [ 11]
See also
References
^ Horndeski, Gregory Walter (1974-09-01). "Second-order scalar-tensor field equations in a four-dimensional space". International Journal of Theoretical Physics . 10 (6): 363– 384. Bibcode :1974IJTP...10..363H . doi :10.1007/BF01807638 . ISSN 0020-7748 . S2CID 122346086 .
^ Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified Gravity and Cosmology". Physics Reports . 513 (1– 3): 1– 189. arXiv :1106.2476 . Bibcode :2012PhR...513....1C . doi :10.1016/j.physrep.2012.01.001 . S2CID 119258154 .
^ Deffayet, C.; Esposito-Farese, G.; Vikman, A. (2009-04-03). "Covariant Galileon". Physical Review D . 79 (8): 084003. arXiv :0901.1314 . Bibcode :2009PhRvD..79h4003D . doi :10.1103/PhysRevD.79.084003 . ISSN 1550-7998 . S2CID 118855364 .
^ Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi (2011-09-01). "Generalized G-inflation: Inflation with the most general second-order field equations". Progress of Theoretical Physics . 126 (3): 511– 529. arXiv :1105.5723 . Bibcode :2011PThPh.126..511K . doi :10.1143/PTP.126.511 . ISSN 0033-068X . S2CID 118587117 .
^ ATLAS Collaboration (2019-03-04). "Constraints on mediator-based dark matter and scalar dark energy models using
s
=
13
{\displaystyle {\sqrt {s}}=13}
TeV
p
p
{\displaystyle pp}
collision data collected by the ATLAS detector". Jhep . 05 : 142. arXiv :1903.01400 . doi :10.1007/JHEP05(2019)142 . S2CID 119182921 .
^ Lombriser, Lucas; Taylor, Andy (2016-03-16). "Breaking a Dark Degeneracy with Gravitational Waves". Journal of Cosmology and Astroparticle Physics . 2016 (3): 031. arXiv :1509.08458 . Bibcode :2016JCAP...03..031L . doi :10.1088/1475-7516/2016/03/031 . ISSN 1475-7516 . S2CID 73517974 .
^ Bettoni, Dario; Ezquiaga, Jose María; Hinterbichler, Kurt; Zumalacárregui, Miguel (2017-04-14). "Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity". Physical Review D . 95 (8): 084029. arXiv :1608.01982 . Bibcode :2017PhRvD..95h4029B . doi :10.1103/PhysRevD.95.084029 . ISSN 2470-0010 . S2CID 119186001 .
^ Creminelli, Paolo; Vernizzi, Filippo (2017-10-16). "Dark Energy after GW170817". Physical Review Letters . 119 (25): 251302. arXiv :1710.05877 . Bibcode :2017PhRvL.119y1302C . doi :10.1103/PhysRevLett.119.251302 . PMID 29303308 . S2CID 206304918 .
^ Sakstein, Jeremy; Jain, Bhuvnesh (2017-10-16). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". Physical Review Letters . 119 (25): 251303. arXiv :1710.05893 . Bibcode :2017PhRvL.119y1303S . doi :10.1103/PhysRevLett.119.251303 . PMID 29303345 . S2CID 39068360 .
^ Ezquiaga, Jose María; Zumalacárregui, Miguel (2017-12-18). "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters . 119 (25): 251304. arXiv :1710.05901 . Bibcode :2017PhRvL.119y1304E . doi :10.1103/PhysRevLett.119.251304 . PMID 29303304 . S2CID 38618360 .
^ Grossman, Lisa (2017-10-24). "What detecting gravitational waves means for the expansion of the universe" . Science News . Retrieved 2017-11-08 .