In algebraic topology , the Hopf construction constructs a map from the join
X
∗
Y
{\displaystyle X*Y}
of two spaces
X
{\displaystyle X}
and
Y
{\displaystyle Y}
to the suspension
S
Z
{\displaystyle SZ}
of a space
Z
{\displaystyle Z}
out of a map from
X
×
Y
{\displaystyle X\times Y}
to
Z
{\displaystyle Z}
. It was introduced by Hopf (1935 ) in the case when
X
{\displaystyle X}
and
Y
{\displaystyle Y}
are spheres. Whitehead (1942) used it to define the J-homomorphism .
Construction
The Hopf construction can be obtained as the composition of a map
X
∗
Y
→
S
(
X
×
Y
)
{\displaystyle X*Y\rightarrow S(X\times Y)}
and the suspension
S
(
X
×
Y
)
→
S
Z
{\displaystyle S(X\times Y)\rightarrow SZ}
of the map from
X
×
Y
{\displaystyle X\times Y}
to
Z
{\displaystyle Z}
.
The map from
X
∗
Y
{\displaystyle X*Y}
to
S
(
X
×
Y
)
{\displaystyle S(X\times Y)}
can be obtained by regarding both sides as a quotient of
X
×
Y
×
I
{\displaystyle X\times Y\times I}
where
I
{\displaystyle I}
is the unit interval. For
X
∗
Y
{\displaystyle X*Y}
one identifies
(
x
,
y
,
0
)
{\displaystyle (x,y,0)}
with
(
z
,
y
,
0
)
{\displaystyle (z,y,0)}
and
(
x
,
y
,
1
)
{\displaystyle (x,y,1)}
with
(
x
,
z
,
1
)
{\displaystyle (x,z,1)}
, while for
S
(
X
×
Y
)
{\displaystyle S(X\times Y)}
one contracts all points of the form
(
x
,
y
,
0
)
{\displaystyle (x,y,0)}
to a point and also contracts all points of the form
(
x
,
y
,
1
)
{\displaystyle (x,y,1)}
to a point. So the map from
X
×
Y
×
I
{\displaystyle X\times Y\times I}
to
S
(
X
×
Y
)
{\displaystyle S(X\times Y)}
factors through
X
∗
Y
{\displaystyle X*Y}
.
References
Hopf, H. (1935), "Über die Abbildungen von Sphären auf Sphäre niedrigerer Dimension" , Fund. Math. , 25 : 427– 440
Whitehead, George W. (1942), "On the homotopy groups of spheres and rotation groups", Annals of Mathematics , Second Series, 43 (4): 634– 640, doi :10.2307/1968956 , ISSN 0003-486X , JSTOR 1968956 , MR 0007107