Result due to Kummer on cyclic extensions of fields that leads to Kummer theory
In abstract algebra , Hilbert's Theorem 90 (or Satz 90 ) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory . In its most basic form, it states that if L /K is an extension of fields with cyclic Galois group G = Gal(L /K ) generated by an element
σ
,
{\displaystyle \sigma ,}
and if
a
{\displaystyle a}
is an element of L of relative norm 1, that is
N
(
a
)
:=
a
σ
(
a
)
σ
2
(
a
)
⋯
σ
n
−
1
(
a
)
=
1
,
{\displaystyle N(a):=a\,\sigma (a)\,\sigma ^{2}(a)\cdots \sigma ^{n-1}(a)=1,}
then there exists
b
{\displaystyle b}
in L such that
a
=
b
/
σ
(
b
)
.
{\displaystyle a=b/\sigma (b).}
The theorem takes its name from the fact that it is the 90th theorem in David Hilbert 's Zahlbericht (Hilbert 1897 , 1998 ), although it is originally due to Kummer (1855 , p.213, 1861 ).
Often a more general theorem due to Emmy Noether (1933 ) is given the name, stating that if L /K is a finite Galois extension of fields with arbitrary Galois group G = Gal(L /K ), then the first cohomology group of G , with coefficients in the multiplicative group of L , is trivial:
H
1
(
G
,
L
×
)
=
{
1
}
.
{\displaystyle H^{1}(G,L^{\times })=\{1\}.}
Examples
Let
L
/
K
{\displaystyle L/K}
be the quadratic extension
Q
(
i
)
/
Q
{\displaystyle \mathbb {Q} (i)/\mathbb {Q} }
. The Galois group is cyclic of order 2, its generator
σ
{\displaystyle \sigma }
acting via conjugation:
σ
:
c
+
d
i
↦
c
−
d
i
.
{\displaystyle \sigma :c+di\mapsto c-di.}
An element
a
=
x
+
y
i
{\displaystyle a=x+yi}
in
Q
(
i
)
{\displaystyle \mathbb {Q} (i)}
has norm
a
σ
(
a
)
=
x
2
+
y
2
{\displaystyle a\sigma (a)=x^{2}+y^{2}}
. An element of norm one thus corresponds to a rational solution of the equation
x
2
+
y
2
=
1
{\displaystyle x^{2}+y^{2}=1}
or in other words, a point with rational coordinates on the unit circle . Hilbert's Theorem 90 then states that every such element a of norm one can be written as
a
=
c
−
d
i
c
+
d
i
=
c
2
−
d
2
c
2
+
d
2
−
2
c
d
c
2
+
d
2
i
,
{\displaystyle a={\frac {c-di}{c+di}}={\frac {c^{2}-d^{2}}{c^{2}+d^{2}}}-{\frac {2cd}{c^{2}+d^{2}}}i,}
where
b
=
c
+
d
i
{\displaystyle b=c+di}
is as in the conclusion of the theorem, and c and d are both integers. This may be viewed as a rational parametrization of the rational points on the unit circle. Rational points
(
x
,
y
)
=
(
p
/
r
,
q
/
r
)
{\displaystyle (x,y)=(p/r,q/r)}
on the unit circle
x
2
+
y
2
=
1
{\displaystyle x^{2}+y^{2}=1}
correspond to Pythagorean triples , i.e. triples
(
p
,
q
,
r
)
{\displaystyle (p,q,r)}
of integers satisfying
p
2
+
q
2
=
r
2
{\displaystyle p^{2}+q^{2}=r^{2}}
.
Cohomology
The theorem can be stated in terms of group cohomology : if L × is the multiplicative group of any (not necessarily finite) Galois extension L of a field K with corresponding Galois group G , then
H
1
(
G
,
L
×
)
=
{
1
}
.
{\displaystyle H^{1}(G,L^{\times })=\{1\}.}
Specifically, group cohomology is the cohomology of the complex whose i- cochains are arbitrary functions from i -tuples of group elements to the multiplicative coefficient group,
C
i
(
G
,
L
×
)
=
{
ϕ
:
G
i
→
L
×
}
{\displaystyle C^{i}(G,L^{\times })=\{\phi :G^{i}\to L^{\times }\}}
, with differentials
d
i
:
C
i
→
C
i
+
1
{\displaystyle d^{i}:C^{i}\to C^{i+1}}
defined in dimensions
i
=
0
,
1
{\displaystyle i=0,1}
by:
(
d
0
(
b
)
)
(
σ
)
=
b
/
b
σ
,
and
(
d
1
(
ϕ
)
)
(
σ
,
τ
)
=
ϕ
(
σ
)
ϕ
(
τ
)
σ
/
ϕ
(
σ
τ
)
,
{\displaystyle (d^{0}(b))(\sigma )=b/b^{\sigma },\quad {\text{ and }}\quad (d^{1}(\phi ))(\sigma ,\tau )\,=\,\phi (\sigma )\phi (\tau )^{\sigma }/\phi (\sigma \tau ),}
where
x
g
{\displaystyle x^{g}}
denotes the image of the
G
{\displaystyle G}
-module element
x
{\displaystyle x}
under the action of the group element
g
∈
G
{\displaystyle g\in G}
.
Note that in the first of these we have identified a 0-cochain
γ
=
γ
b
:
G
0
=
i
d
G
→
L
×
{\displaystyle \gamma =\gamma _{b}:G^{0}=id_{G}\to L^{\times }}
, with its unique image value
b
∈
L
×
{\displaystyle b\in L^{\times }}
.
The triviality of the first cohomology group is then equivalent to the 1-cocycles
Z
1
{\displaystyle Z^{1}}
being equal to the 1-coboundaries
B
1
{\displaystyle B^{1}}
, viz.:
Z
1
=
ker
d
1
=
{
ϕ
∈
C
1
satisfying
∀
σ
,
τ
∈
G
:
ϕ
(
σ
τ
)
=
ϕ
(
σ
)
ϕ
(
τ
)
σ
}
is equal to
B
1
=
im
d
0
=
{
ϕ
∈
C
1
:
∃
b
∈
L
×
such that
ϕ
(
σ
)
=
b
/
b
σ
∀
σ
∈
G
}
.
{\displaystyle {\begin{array}{rcl}Z^{1}&=&\ker d^{1}&=&\{\phi \in C^{1}{\text{ satisfying }}\,\,\forall \sigma ,\tau \in G\,\colon \,\,\phi (\sigma \tau )=\phi (\sigma )\,\phi (\tau )^{\sigma }\}\\{\text{ is equal to }}\\B^{1}&=&{\text{im }}d^{0}&=&\{\phi \in C^{1}\ \,\colon \,\,\exists \,b\in L^{\times }{\text{ such that }}\phi (\sigma )=b/b^{\sigma }\ \ \forall \sigma \in G\}.\end{array}}}
For cyclic
G
=
{
1
,
σ
,
…
,
σ
n
−
1
}
{\displaystyle G=\{1,\sigma ,\ldots ,\sigma ^{n-1}\}}
, a 1-cocycle is determined by
ϕ
(
σ
)
=
a
∈
L
×
{\displaystyle \phi (\sigma )=a\in L^{\times }}
, with
ϕ
(
σ
i
)
=
a
σ
(
a
)
⋯
σ
i
−
1
(
a
)
{\displaystyle \phi (\sigma ^{i})=a\,\sigma (a)\cdots \sigma ^{i-1}(a)}
and:
1
=
ϕ
(
1
)
=
ϕ
(
σ
n
)
=
a
σ
(
a
)
⋯
σ
n
−
1
(
a
)
=
N
(
a
)
.
{\displaystyle 1=\phi (1)=\phi (\sigma ^{n})=a\,\sigma (a)\cdots \sigma ^{n-1}(a)=N(a).}
On the other hand, a 1-coboundary is determined by
ϕ
(
σ
)
=
b
/
b
σ
{\displaystyle \phi (\sigma )=b/b^{\sigma }}
. Equating these gives the original version of the Theorem.
A further generalization is to cohomology with non-abelian coefficients : that if H is either the general or special linear group over L , including
GL
1
(
L
)
=
L
×
{\displaystyle \operatorname {GL} _{1}(L)=L^{\times }}
, then
H
1
(
G
,
H
)
=
{
1
}
.
{\displaystyle H^{1}(G,H)=\{1\}.}
Another generalization is to a scheme X :
H
et
1
(
X
,
G
m
)
=
H
1
(
X
,
O
X
×
)
=
Pic
(
X
)
,
{\displaystyle H_{\text{et}}^{1}(X,\mathbb {G} _{m})=H^{1}(X,{\mathcal {O}}_{X}^{\times })=\operatorname {Pic} (X),}
where
Pic
(
X
)
{\displaystyle \operatorname {Pic} (X)}
is the group of isomorphism classes of locally free sheaves of
O
X
×
{\displaystyle {\mathcal {O}}_{X}^{\times }}
-modules of rank 1 for the Zariski topology, and
G
m
{\displaystyle \mathbb {G} _{m}}
is the sheaf defined by the affine line without the origin considered as a group under multiplication. [ 1]
There is yet another generalization to Milnor K-theory which plays a role in Voevodsky's proof of the Milnor conjecture .
Proof
Let
L
/
K
{\displaystyle L/K}
be cyclic of degree
n
,
{\displaystyle n,}
and
σ
{\displaystyle \sigma }
generate
Gal
(
L
/
K
)
{\displaystyle \operatorname {Gal} (L/K)}
. Pick any
a
∈
L
{\displaystyle a\in L}
of norm
N
(
a
)
:=
a
σ
(
a
)
σ
2
(
a
)
⋯
σ
n
−
1
(
a
)
=
1.
{\displaystyle N(a):=a\sigma (a)\sigma ^{2}(a)\cdots \sigma ^{n-1}(a)=1.}
By clearing denominators, solving
a
=
x
/
σ
−
1
(
x
)
∈
L
{\displaystyle a=x/\sigma ^{-1}(x)\in L}
is the same as showing that
a
σ
−
1
(
⋅
)
:
L
→
L
{\displaystyle a\sigma ^{-1}(\cdot ):L\to L}
has
1
{\displaystyle 1}
as an eigenvalue. We extend this to a map of
L
{\displaystyle L}
-vector spaces via
{
1
L
⊗
a
σ
−
1
(
⋅
)
:
L
⊗
K
L
→
L
⊗
K
L
ℓ
⊗
ℓ
′
↦
ℓ
⊗
a
σ
−
1
(
ℓ
′
)
.
{\displaystyle {\begin{cases}1_{L}\otimes a\sigma ^{-1}(\cdot ):L\otimes _{K}L\to L\otimes _{K}L\\\ell \otimes \ell '\mapsto \ell \otimes a\sigma ^{-1}(\ell ').\end{cases}}}
The primitive element theorem gives
L
=
K
(
α
)
{\displaystyle L=K(\alpha )}
for some
α
{\displaystyle \alpha }
. Since
α
{\displaystyle \alpha }
has minimal polynomial
f
(
t
)
=
(
t
−
α
)
(
t
−
σ
(
α
)
)
⋯
(
t
−
σ
n
−
1
(
α
)
)
∈
K
[
t
]
,
{\displaystyle f(t)=(t-\alpha )(t-\sigma (\alpha ))\cdots \left(t-\sigma ^{n-1}(\alpha )\right)\in K[t],}
we can identify
L
⊗
K
L
→
∼
L
⊗
K
K
[
t
]
/
f
(
t
)
→
∼
L
[
t
]
/
f
(
t
)
→
∼
L
n
{\displaystyle L\otimes _{K}L{\stackrel {\sim }{\to }}L\otimes _{K}K[t]/f(t){\stackrel {\sim }{\to }}L[t]/f(t){\stackrel {\sim }{\to }}L^{n}}
via
ℓ
⊗
p
(
α
)
↦
ℓ
(
p
(
α
)
,
p
(
σ
α
)
,
…
,
p
(
σ
n
−
1
α
)
)
.
{\displaystyle \ell \otimes p(\alpha )\mapsto \ell \left(p(\alpha ),p(\sigma \alpha ),\ldots ,p(\sigma ^{n-1}\alpha )\right).}
Here we wrote the second factor as a
K
{\displaystyle K}
-polynomial in
α
{\displaystyle \alpha }
.
Under this identification, our map becomes
{
a
σ
−
1
(
⋅
)
:
L
n
→
L
n
ℓ
(
p
(
α
)
,
…
,
p
(
σ
n
−
1
α
)
)
↦
ℓ
(
a
p
(
σ
n
−
1
α
)
,
σ
a
p
(
α
)
,
…
,
σ
n
−
1
a
p
(
σ
n
−
2
α
)
)
.
{\displaystyle {\begin{cases}a\sigma ^{-1}(\cdot ):L^{n}\to L^{n}\\\ell \left(p(\alpha ),\ldots ,p(\sigma ^{n-1}\alpha ))\mapsto \ell (ap(\sigma ^{n-1}\alpha ),\sigma ap(\alpha ),\ldots ,\sigma ^{n-1}ap(\sigma ^{n-2}\alpha )\right).\end{cases}}}
That is to say under this map
(
ℓ
1
,
…
,
ℓ
n
)
↦
(
a
ℓ
n
,
σ
a
ℓ
1
,
…
,
σ
n
−
1
a
ℓ
n
−
1
)
.
{\displaystyle (\ell _{1},\ldots ,\ell _{n})\mapsto (a\ell _{n},\sigma a\ell _{1},\ldots ,\sigma ^{n-1}a\ell _{n-1}).}
(
1
,
σ
a
,
σ
a
σ
2
a
,
…
,
σ
a
⋯
σ
n
−
1
a
)
{\displaystyle (1,\sigma a,\sigma a\sigma ^{2}a,\ldots ,\sigma a\cdots \sigma ^{n-1}a)}
is an eigenvector with eigenvalue
1
{\displaystyle 1}
iff
a
{\displaystyle a}
has norm
1
{\displaystyle 1}
.
References
Hilbert, David (1897), "Die Theorie der algebraischen Zahlkörper" , Jahresbericht der Deutschen Mathematiker-Vereinigung (in German), 4 : 175– 546, ISSN 0012-0456
Hilbert, David (1998), The theory of algebraic number fields , Berlin, New York: Springer-Verlag , ISBN 978-3-540-62779-1 , MR 1646901
Kummer, Ernst Eduard (1855), "Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke." , Journal für die reine und angewandte Mathematik (in German), 50 : 212– 232, doi :10.1515/crll.1855.50.212 , ISSN 0075-4102
Kummer, Ernst Eduard (1861), "Zwei neue Beweise der allgemeinen Reciprocitätsgesetze unter den Resten und Nichtresten der Potenzen, deren Grad eine Primzahl ist" , Abdruck aus den Abhandlungen der KGL. Akademie der Wissenschaften zu Berlin (in German), Reprinted in volume 1 of his collected works, pages 699–839
Chapter II of J.S. Milne, Class Field Theory , available at his website [1] .
Neukirch, Jürgen ; Schmidt, Alexander; Wingberg, Kay (2000), Cohomology of Number Fields , Grundlehren der Mathematischen Wissenschaften , vol. 323, Berlin: Springer-Verlag, ISBN 978-3-540-66671-4 , MR 1737196 , Zbl 0948.11001
Noether, Emmy (1933), "Der Hauptgeschlechtssatz für relativ-galoissche Zahlkörper." , Mathematische Annalen (in German), 108 (1): 411– 419, doi :10.1007/BF01452845 , ISSN 0025-5831 , Zbl 0007.29501
Snaith, Victor P. (1994), Galois module structure , Fields Institute monographs, Providence, RI: American Mathematical Society , ISBN 0-8218-0264-X , Zbl 0830.11042
External links
Wikisource has original text related to this article: