Highly optimized tolerance
In applied mathematics , highly optimized tolerance (HOT) is a method of generating power law behavior in systems by including a global optimization principle. It was developed by Jean M. Carlson and John Doyle in the early 2000s.[ 1] For some systems that display a characteristic scale, a global optimization term could potentially be added that would then yield power law behavior. It has been used to generate and describe internet-like graphs, forest fire models and may also apply to biological systems.
Example
The following is taken from Sornette's book.
Consider a random variable ,
X
{\displaystyle X}
, that takes on values
x
i
{\displaystyle x_{i}}
with probability
p
i
{\displaystyle p_{i}}
. Furthermore, let’s assume for another parameter
r
i
{\displaystyle r_{i}}
x
i
=
r
i
−
β
{\displaystyle x_{i}=r_{i}^{-\beta }}
for some fixed
β
{\displaystyle \beta }
. We then want to minimize
L
=
∑
i
=
0
N
−
1
p
i
x
i
{\displaystyle L=\sum _{i=0}^{N-1}p_{i}x_{i}}
subject to the constraint
∑
i
=
0
N
−
1
r
i
=
κ
{\displaystyle \sum _{i=0}^{N-1}r_{i}=\kappa }
Using Lagrange multipliers , this gives
p
i
∝
x
i
−
(
1
+
1
/
β
)
{\displaystyle p_{i}\propto x_{i}^{-(1+1/\beta )}}
giving us a power law. The global optimization of minimizing the energy along with the power law dependence between
x
i
{\displaystyle x_{i}}
and
r
i
{\displaystyle r_{i}}
gives us a power law distribution in probability.
See also
References
Carlson, J. M. ; Doyle, John (August 1999), "Highly optimized tolerance: A mechanism for power laws in designed systems", Physical Review E , 60 (2): 1412– 1427, arXiv :cond-mat/9812127 , Bibcode :1999PhRvE..60.1412C , doi :10.1103/PhysRevE.60.1412 , PMID 11969901 , S2CID 2648280 .
Carlson, J. M.; Doyle, John (March 2000), "Highly Optimized Tolerance: Robustness and Design in Complex Systems" (PDF) , Physical Review Letters , 84 (11): 2529– 2532, Bibcode :2000PhRvL..84.2529C , doi :10.1103/PhysRevLett.84.2529 , PMID 11018927 .
Doyle, John; Carlson, J. M. (June 2000), "Power Laws, Highly Optimized Tolerance, and Generalized Source Coding" (PDF) , Physical Review Letters , 84 (24): 5656– 5659, Bibcode :2000PhRvL..84.5656D , doi :10.1103/PhysRevLett.84.5656 , PMID 10991018 .
Greene, Katie (2005), "Untangling a web: The internet gets a new look" , Science News , 168 (15): 230, doi :10.2307/4016836 , JSTOR 4016836 .
Li, Lun; Alderson, David; Doyle, John C.; Willinger, Walter (2005), "Towards a theory of scale-free graphs: definition, properties, and implications" , Internet Mathematics , 2 (4): 431– 523, arXiv :cond-mat/0501169 , doi :10.1080/15427951.2005.10129111 , MR 2241756 , S2CID 107 .
Robert, Carl; Carlson, J. M.; Doyle, John (April 2001), "Highly optimized tolerance in epidemic models incorporating local optimization and regrowth" (PDF) , Physical Review E , 63 (5): 056122, Bibcode :2001PhRvE..63e6122R , doi :10.1103/PhysRevE.63.056122 , PMID 11414976 .
Sornette, Didier (2000), Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , Springer Series in Synergetics, Berlin: Springer-Verlag, doi :10.1007/978-3-662-04174-1 , ISBN 3-540-67462-4 , MR 1782504 .
Zhou, Tong; Carlson, J. M. (2000), "Dynamics and changing environments in highly optimized tolerance", Physical Review E , 62 (3): 3197– 3204, Bibcode :2000PhRvE..62.3197Z , doi :10.1103/PhysRevE.62.3197 , PMID 11088814 .
Zhou, Tong; Carlson, J. M.; Doyle, John (2002), "Mutation, specialization, and hypersensitivity in highly optimized tolerance", Proceedings of the National Academy of Sciences , 99 (4): 2049– 2054, Bibcode :2002PNAS...99.2049Z , doi :10.1073/pnas.261714399 , PMC 122317 , PMID 11842230 .