Family of orthogonal polynomials
In mathematics, the Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials, introduced by Pafnuty Chebyshev in 1875 (Chebyshev 1907 ) and rediscovered by Wolfgang Hahn (Hahn 1949 ). The Hahn class is a name for special cases of Hahn polynomials, including Hahn polynomials, Meixner polynomials , Krawtchouk polynomials , and Charlier polynomials . Sometimes the Hahn class is taken to include limiting cases of these polynomials, in which case it also includes the classical orthogonal polynomials .
Hahn polynomials are defined in terms of generalized hypergeometric functions by
Q
n
(
x
;
α
,
β
,
N
)
=
3
F
2
(
−
n
,
−
x
,
n
+
α
+
β
+
1
;
α
+
1
,
−
N
+
1
;
1
)
.
{\displaystyle Q_{n}(x;\alpha ,\beta ,N)={}_{3}F_{2}(-n,-x,n+\alpha +\beta +1;\alpha +1,-N+1;1).\ }
Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010 , 14) give a detailed list of their properties.
If
α
=
β
=
0
{\displaystyle \alpha =\beta =0}
, these polynomials are identical to the discrete Chebyshev polynomials except for a scale factor.
Closely related polynomials include the dual Hahn polynomials R n (x ;γ,δ,N ), the continuous Hahn polynomials p n (x ,a ,b , a , b ), and the continuous dual Hahn polynomials S n (x ;a ,b ,c ). These polynomials all have q -analogs with an extra parameter q , such as the q-Hahn polynomials Q n (x ;α,β, N ;q ), and so on.
Orthogonality
∑
x
=
0
N
−
1
Q
n
(
x
)
Q
m
(
x
)
ρ
(
x
)
=
1
π
n
δ
m
,
n
,
{\displaystyle \sum _{x=0}^{N-1}Q_{n}(x)Q_{m}(x)\rho (x)={\frac {1}{\pi _{n}}}\delta _{m,n},}
∑
n
=
0
N
−
1
Q
n
(
x
)
Q
n
(
y
)
π
n
=
1
ρ
(
x
)
δ
x
,
y
{\displaystyle \sum _{n=0}^{N-1}Q_{n}(x)Q_{n}(y)\pi _{n}={\frac {1}{\rho (x)}}\delta _{x,y}}
where δx,y is the Kronecker delta function and the weight functions are
ρ
(
x
)
=
ρ
(
x
;
α
;
β
,
N
)
=
(
α
+
x
x
)
(
β
+
N
−
1
−
x
N
−
1
−
x
)
/
(
N
+
α
+
β
N
−
1
)
{\displaystyle \rho (x)=\rho (x;\alpha ;\beta ,N)={\binom {\alpha +x}{x}}{\binom {\beta +N-1-x}{N-1-x}}/{\binom {N+\alpha +\beta }{N-1}}}
and
π
n
=
π
n
(
α
,
β
,
N
)
=
(
N
−
1
n
)
2
n
+
α
+
β
+
1
α
+
β
+
1
Γ
(
β
+
1
,
n
+
α
+
1
,
n
+
α
+
β
+
1
)
Γ
(
α
+
1
,
α
+
β
+
1
,
n
+
β
+
1
,
n
+
1
)
/
(
N
+
α
+
β
+
n
n
)
{\displaystyle \pi _{n}=\pi _{n}(\alpha ,\beta ,N)={\binom {N-1}{n}}{\frac {2n+\alpha +\beta +1}{\alpha +\beta +1}}{\frac {\Gamma (\beta +1,n+\alpha +1,n+\alpha +\beta +1)}{\Gamma (\alpha +1,\alpha +\beta +1,n+\beta +1,n+1)}}/{\binom {N+\alpha +\beta +n}{n}}}
.
Relation to other polynomials
References
Chebyshev, P. (1907), "Sur l'interpolation des valeurs équidistantes", in Markoff, A.; Sonin, N. (eds.), Oeuvres de P. L. Tchebychef , vol. 2, pp. 219– 242, Reprinted by Chelsea
Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten , 2 : 4– 34, doi :10.1002/mana.19490020103 , ISSN 0025-584X , MR 0030647
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues , Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , doi :10.1007/978-3-642-05014-5 , ISBN 978-3-642-05013-8 , MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .