Gyrolite is also known as centrallasite, glimmer zeolite or gurolite.[3]
Discovery and natural occurrence
It was first described in 1851 for an occurrence at The Storr on the Isle of Skye, Scotland and is named from the ancient Greek word for circle, guros (γῦρος), based on the round form in which it is commonly found.[4]
Minerals associated with gyrolite include apophyllite, okenite and many of the other zeolites.[5]
Gyrolite is found in Scotland, Ireland; Italy, Faroe Islands, Greenland, India, Japan, USA, Canada and various other localities.[2][3]
Gyrolite can be synthesized in the laboratory, or industrially, by hydrothermal reaction in the temperature range 150 – 250 °C by reacting CaO and amorphous SiO2, or quartz, in saturated steam in the presence of CaSO4 salts or not.[8][9] At temperature lower than 150 °C, the reaction rate is very slow. At temperature above 250 °C, gyrolite recrystallizes into 1.13 nm tobermorite and xonotlite.[8]
Gyrolite is also one of the rare phases detected in situ along with pectolite by synchrotron X-rays diffraction in hydrothermal synthesis of cement.[10] Synthetic gyrolite has also a large specific surface and could enter industrial applications as oil absorber.[11] Gyrolite globular rosettes resemble that of shlykovite,[12][13] a new natural crystalline C-S-H mineral characterized in 2010 and also to mountainite and rhodesite, other crystalline ASR products of the same family.[14][15][16][17]
^Hewlett, Peter (2003). Lea's chemistry of cement and concrete. See chapter 14.2 Oilwell cement, p. 807. Elsevier. ISBN0-08-053541-0.
^Taylor, Harry F.W. (1997). Cement chemistry. See gyrolite at pp. 344 and 348. Thomas Telford. ISBN0-7277-2592-0.
^ abSiauciunas, R.; Baltakys, K. (2004). "Formation of gyrolite during hydrothermal synthesis in the mixtures of CaO and amorphous SiO2 or quartz". Cement and Concrete Research. 34 (11): 2029–2036. doi:10.1016/j.cemconres.2004.03.009. ISSN0008-8846.
^Baltakys, K.; Siauciunas, R. (2010). "Influence of gypsum additive on the gyrolite formation process". Cement and Concrete Research. 40 (3): 376–383. doi:10.1016/j.cemconres.2009.11.004. ISSN0008-8846.
^Shawa, S.; Henderson, C. M. B.; Clark, S. M. (2001). "Hydrothermal synthesis of cement phases: An in situ synchrotron, energy dispersive diffraction study of reaction kinetics and mechanisms". High Pressure Research. 20 (1–6): 311–324. Bibcode:2001HPR....20..311S. doi:10.1080/08957950108206179. ISSN0895-7959. S2CID98509464.
^
Pekov, I. V.; Zubkova, N. V.; Filinchuk, Ya. E.; Chukanov, N. V.; Zadov, A. E.; Pushcharovsky, D. Yu.; Gobechiya, E. R. (2010-12-01). "Shlykovite KCa[Si4O9(OH)] · 3 H2O and cryptophyllite K2Ca[Si4O10] · 5 H2O, new mineral species from the Khibiny alkaline pluton, Kola Peninsula, Russia". Geology of Ore Deposits. 52 (8): 767–777. Bibcode:2010GeoOD..52..767P. doi:10.1134/S1075701510080088. ISSN1555-6476. S2CID129570863.
^De Ceukelaire, L. (1991-05-01). "The determination of the most common crystalline alkali-silica reaction product". Materials and Structures. 24 (3): 169–171. doi:10.1007/BF02472981. ISSN1871-6873. S2CID137653659.
Anderson Thomas (1851) Description and analysis of gyrolite, a new mineral species. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 1, 111–113. (PDF 239,5 kB)