Guy David (born 1957) is a French mathematician, specializing in analysis.
Biography
David studied from 1976 to 1981 at the École normale supérieure, graduating with Agrégation and Diplôme d'études approfondies (DEA). At the University of Paris-Sud (Paris XI) he received in 1981 his doctoral degree (Thèse du 3ème cycle)[1] and in 1986 his higher doctorate (Thèse d'État) with thesis Noyau de Cauchy et opérateurs de Caldéron-Zygmund supervised by Yves Meyer. David was from 1982 to 1989 an attaché de recherches (research associate) at the Centre de mathématiques Laurent Schwartz of the CNRS. At the University of Paris-Sud he was from 1989 to 1991 a professor and from 1991 to 2001 a professor first class, and is since 1991 a professor of the Classe exceptionelle.[2]
David is known for his research on Hardy spaces and on singular integral equations using the methods of Alberto Calderón. In 1998 David solved a special case of a problem of Vitushkin.[3] Among other topics, David has done research on Painlevé's problem of geometrically characterizing removable singularities for bounded functions; Xavier Tolsa's solution of Painlevé's problem is based upon David's methods. With Jean-Lin Journé he proved in 1984 the T(1) Theorem,[4] for which they jointly received the Salem Prize. The T(1) Theorem is of fundamental importance for the theory of singular integral operators of Calderón-Zygmund type. David also did research on the conjecture of David Mumford and Jayant Shah in image processing and made contributions to the theory of Hardy spaces; the contributions were important for Jones' traveling salesman theorem in . David has written several books in collaboration with Stephen Semmes.[2]
David, Guy (1988), "Morceaux de graphes lipschitziens et intégrales singulières sur une surface", Revista Matemática Iberoamericana, 4 (1): 73–114, doi:10.4171/RMI/64
with Jean-Lin Journé and Stephen Semmes: David, Guy; Journé, Jean-Lin; Semmes, Stephen (1985), "Opérateurs de Calderon-Zygmund, fonctions para-accrétives et interpolation", Revista Matemática Iberoamericana, 1 (4): 1–56, doi:10.4171/RMI/17
with Jean-Lin Journé: David, Guy; Journé, Jean-Lin (1984), "A boundedness criterion for generalized Calderón-Zygmund operators", Annals of Mathematics, Second Series, 120 (2): 371–397, doi:10.2307/2006946, JSTOR2006946
"-arcs for minimizers of the Mumford-Shah functional", SIAM Journal on Applied Mathematics, 56 (3): 783–888, 1996, doi:10.1137/s0036139994276070
David, Guy (1998), "Unrectifiable 1-sets have vanishing analytic capacity", Revista Matemática Iberoamericana, 14 (2): 369–479, doi:10.4171/RMI/242
with Pertti Mattila: David, Guy; Mattila, Pertti (2000), "Removable sets for Lipschitz harmonic functions in the plane", Revista Matemática Iberoamericana, 16 (1): 137–215, doi:10.4171/RMI/272
with Tatiana Toro: David, G.; Toro, T. (2015), "Regularity of almost minimizers with free boundary", Calculus of Variations and Partial Differential Equations, 54: 455–524, arXiv:1306.2704, doi:10.1007/s00526-014-0792-z