More precisely, let G be a graph with nvertices. It is assumed that G is a simple graph, that is, it does not contain loops or parallel edges. Let A be the adjacency matrix of G and let , , be the eigenvalues of A. Then the energy of the graph is defined as:
References
Cvetković, Dragoš M.; Doob, Michael; Sachs, Horst (1980), Spectra of graphs, Pure and Applied Mathematics, vol. 87, New York: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN0-12-195150-2, MR0572262.
Gutman, Ivan (1978), "The energy of a graph", 10. Steiermärkisches Mathematisches Symposium (Stift Rein, Graz, 1978), Ber. Math.-Statist. Sekt. Forsch. Graz, vol. 103, pp. 1–22, MR0525890.
Gutman, Ivan (2001), "The energy of a graph: old and new results", Algebraic combinatorics and applications (Gößweinstein, 1999), Berlin: Springer, pp. 196–211, MR1851951.
Li, Xueliang; Shi, Yongtang; Gutman, Ivan (2012), Graph Energy, New York: Springer, ISBN978-1-4614-4219-6.