Born in Piazza Armerina, the son of Giovanni and Angioletta Bocciarelli, he graduated from the Università degli Studi di Genova, earning his laurea degree in 1949 under the direction of Enzo Martinelli.[5] In 1956 he was in Rome at the INdAM, having been awarded a scholarship for his early research activities.[6][7] A year later, in 1957, he was elected "discepolo ricercatore"[8] in the same institute.[9] During the same year,[10] he gave some lectures on topics belonging to the field of several complex variables,[11] later included in the lecture notes (Severi 1958).[12] In Rome he also met Lucilla Bassotti, who eventually become his wife. In 1961, he won the competitive examination for the chair of "Geometria analitica con elementi di Geometria Proiettiva e Geometria Descrittiva con Disegno" of the University of Parma,[13] scoring first out of the three finalists:[14] a year later, in 1962, he became extraordinary professor,[15] and then, in 1965, ordinary professor to the same chair.[16] In 1979 he became ordinary professor of "Geometria superiore",[17] holding that chair uninterruptedly until 1994:[18] from 1994 up to his retirement in 1997, he was "professore fuori ruolo" in the same department of mathematics where he worked for more than 35 years.[19]
Apart from his research and teaching work, he was actively involved as a member of the editorial board of the "Rivista di Matematica della Università di Parma", and served also as the journal director from 1992 to 1997.[20]
Rizza died in Parma on 15 October 2018, at the age of 94.[21][22]
In 1995, to celebrate his 70th birthday, an international conference on differential geometry was organized in Parma: the proceedings were later published as a special issue of the "Rivista di Matematica della Università di Parma".[24]
In 1999 the University of Parma, where he worked for more than 35 years, awarded him the title of professor emeritus.[25]
Enzo Martinelli described Giovanni Battista Rizza as a passionate researcher with a "strong intellectual force",[27] and his scientific work as rich of geometrical ideas, denoting his strong algorithmic ability.[28] According to Martinelli, Rizza is also a skilled organizer:[29] his ability in organizational tasks is also acknowledged and praised by Schreiber (1973, p. 1), who also alludes the positive opinions of colleagues and students alike about his involvement in research, teaching and administrative duties at the mathematics department of the University of Parma.
Theory of analytic functions of several complex variables
All'estensione, tutt'altro che banale, allo spazio R2n dei metodi di Martinelli per dimostrare la (3), è dedicata una Memoria [8] di Giovanni Battista Rizza, il quale, sempre nell'ipotesi ρ(x1, y1,..., xn, yn) ∈ Cω, perviene a stabilire la (3) per n qualsiasi. Anche questo lavoro, per quanto redatto in lingua inglese e pubblicato su una delle principali riviste matematiche, non ha nella letteratura attuale, la notorietà che meriterebbe.[35]
Rizza published only three work in this field:[36] in the first one, the highly remarkable memoir (Rizza 1955),[37] he extends to pluriharmonic functions of 2nreal variables, n > 2, the methods introduced by Enzo Martinelli in order to give new proof of a result of Luigi Amoroso for pluriharmonic functions of four real variables.[38] Precisely, he proves the following formula
1
where
u is a polyharmonic function defined on a boundeddomainΩ,
Formula (1) express a condition the normal derivative of the boundary value of a pluriharmonic function on domain with real analytic boundary must satisfy.[39] It can be used to construct an integral representation for pluriharmonic functions on such kind of domains, by using the Green's formula for the Laplacian,[40] and also to establish an integro-differential equation boundary values of pluriharmonic functions must satisfy.[41] Rizza's result motivated other works on the same topic by Gaetano Fichera, Paolo de Bartolomeis and Giuseppe Tomassini.[42]
Selected publications
Research works
Rizza, Giovanni Battista (1950), "Sulle funzioni analitiche nelle algebre ipercomplesse" [On analytic functions on hypercomplex algebras], Pontificia Academia Scientiarum. Commentationes (in Italian), 14: 169–194, MR0057350. In this work Rizza extends the classical Cauchy's integral theorem to monogenic functions on a general complex algebra.
Rizza, Giovanni Battista (1952), "Contributi al problema della determinazione di una formula integrale per le funzioni monogene nelle algebre complesse dotate di modulo e commutative" [Contributions to the problem of determining an integral formula for monogenic functions on complex commutative algebras with modulus], Rendiconti di Matematica, V Serie (in Italian), 23 (1–2): 134–155, MR0211370, Zbl0047.32204.
Rizza, Giovanni Battista (1952a), "Estensione della formula integrale di Cauchy alle algebre complesse dotate di modulo e commutative" [Extension of Cauchy's integral formula to commutative complex algebras with modulus], Rendiconti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Serie VIII (in Italian), XII (6): 667–669, MR0062240, Zbl0048.06101.
Rizza, Giovanni Battista (1953), "Teoria delle funzioni nelle algebre complesse dotate di modulo e commutative" [Function theory on commutative complex algebras with modulus], Rendiconti di Matematica, V Serie (in Italian), 23 (1–2): 221–249, MR0211370, Zbl0123.15203.
Rizza, G. B. (1957), "Su diverse estensioni dell'invariante di E. E. Levi nella teoria delle funzioni di più variabili complesse" [On different extensions of E. E. Levi invariant in the theory of functions of several complex variables], Annali di Matematica Pura ed Applicata (in Italian), 44 (1): 73–89, doi:10.1007/BF02415191, MR0095965, S2CID120897623, Zbl0091.25903. In this work Rizza epitomizes all known extensions of the Levi invariant to hypersurfaces in for n > 2 in a single tensor of hybrid type. This paper is also interesting since it traces the story of such extensions back to the pioneering work of Eugenio Elia Levi.
Rizza, G. B. (1958), "Appendice I. Rappresentazione esplicita di tipo integrale per le funzioni r–armoniche. Estensione al caso di r variabili complesse dell'invariante di E. E. Levi", in Severi, Francesco (ed.), Lezioni sulle funzioni analitiche di più variabili complesse – Tenute nel 1956–57 all'Istituto Nazionale di Alta Matematica in Roma [Lectures on analytic functions of several complex variables – Lectured in 1956–57 at the Istituto Nazionale di Alta Matematica in Rome] (in Italian), Padova: CEDAM – Casa Editrice Dott. Antonio Milani, pp. 219–231, Zbl0094.28002. The notes from the lectures given by Giovanni Battista Rizza for a course held by Francesco Severi at the Istituto Nazionale di Alta Matematica: the full course notes, published as a monograph, include also a chapter by Enzo Martinelli and an appendix by Mario Benedicty). The topics he exposes are summarized by the two parts of the title, whose free English translations are "Explicit integral representation for –harmonic functions" and "Extension of the E. E. Levi invariant to the case of complex variables".
Rizza, Giovanni Battista (1962b), "Strutture di Finsler sulle varietà quasi complesse" [Finsler structures on almost complex manifolds], Rendiconti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Serie VIII (in Italian), 33 (5): 271–275, Zbl0113.37202. Another short presentation of the results proved in (Rizza 1963).
Rizza, Giovanni Battista (1964), "F-forme quadratiche ed hermitiane" [Hermitian and quadratic F-forms], Rendiconti di Matematica, V Serie (in Italian), 23 (1–2): 221–249, MR0211370, Zbl0123.15203. Shoshichi Kobayashi cites this article as the first one in the theory of Rizza manifolds.
Rizza, Giovanni Battista (December 12, 1973), "Contributi recenti alla teoria delle funzioni nelle algebre" [Recent contributions to the theory of functions on algebras], Rendiconti del Seminario Matematico e Fisico di Milano (in Italian), 43 (1): 45–54, doi:10.1007/BF02924838, MR0350025, S2CID123219540, Zbl0325.30040. A short but comprehensive survey paper detailing the works on the field done by Italian mathematicians during the years from 1961 to 1973: however, it also includes several biographical references to other earlier works by non Italian mathematicians and to historical bibliographies on hypercomplex analysis.
^ abThe detailed motivation for the award is reported in the Bollettino UMI 1954, pp. 477–478. The high scientific value of the works of the two young mathematicians induced the commission to ask the benefactors supporting the prize for a double award: their request was accepted.
^ abAccording to the motivation for the award of the "Premio Ottorino Pomini", reported on the Bollettino UMI (1954, p. 477), "Sono particolarmente degni di nota i risultati sui teoremi integrali per le funzioni regolari, sulle estensioni della formula integrale di Cauchy alle funzioni monogene sulle algebre complesse dotate di modulo commutative e sul conseguente sviluppo della relativa teoria, ed infine sulla struttura delle algebre di Clifford" ("Particularly notable results are the ones on the integral theorems for regular functions, the ones on the extension of Cauchy integral formula to complex commutative algebras with modulus, and lastly the ones on the structure of Clifford algebras").
^He, Giuseppe Arcidiacono and Dario Del Pasqua, were awarded the scholarship without sustaining the "colloquio" ("colloquium" in English translation), an oral exam where the candidate was asked to answer questions posed by a scientific jury, according to Roghi (2005, p. 46) who reports also an excerpt of the motivation given by the commission for the awarding of the scholarship to Rizza: "... perché trattasi di giovani di cui è nota l'attività scientifica...", i.e. (English translation): "...because they are young researchers whose scientific activity is known, ...").
^"Disciple researcher" (English translation) was the appellation of junior research scientists working at the INdAM. See (Roghi 2005) for further details.
^See (Donnini, Gigante & Mangione 1994). In the preface, the editors and members of the organizing committee briefly commemorate Franco Tricerri, former pupil of Rizza and speaker at the conference, who died in a plane crash in China few weeks before the proceedings of the conference were published (p. iii).
^Martinelli (1994, p. 1) precisely characterizes Rizza's scientific work as developed with "...molta passione e forza intellettuale...", i.e. with (English translation) "...much passion and intellectual force...".
^Again according to Martinelli (1994, p. 2): "Queste poche righe mi auguro siano servite a dimostrare che Rizza è un matematico ricco di idee geometriche e dotato di forti capacità algoritmiche.", i.e. (free English translation) "I hope those few lines have been of some help in demonstrating that Rizza is a mathematician rich of geometrical ideas and gifted with a strong algorithmic ability."
^In the terminology of Rizza (1952, 1952a), the algebra A* is said to be the real image of (precisely, l'immagine reale di) A.
^(English translation): "To the far from trivial extension to the R2n space of Martinelli's methods in order to prove (3) a Memoir [8] of Giovanni Battista Rizza is devoted, who, again under the hypothesis that ρ(x1, y1,..., xn, yn) ∈ Cω, succeeds in proving (3) for every n. Even this work, despite being written in English and published in a major mathematical journal, has not, in the current literature, the notoriety it deserves".
^The work (Rizza 1954) is only a research announcement related to the (Rizza 1955), while (Rizza 1958) is set of course notes based on the same paper and on (Rizza 1957).
^According to Fichera (1982b, p. 24), who praises this work as "molto considerevole": see also his comments in (Fichera 1982a, p. 135).
Bollettino UMI (1954), "Notizie" [Notices], Bollettino dell'Unione Matematica Italiana, Serie III (in Italian), 9 (4): 467–490. The official relation of the judging commission for the awarding of the Ottorino Pomini Prize in 1954, jointly won by Gabriele Darbo and Giovanni Battista Rizza.
Bollettino UMI (1962), "Notizie" [Notices], Bollettino dell'Unione Matematica Italiana, Serie III (in Italian), 17 (1): 120–157. The official announcement of the winning by Giovanni Battista Rizza of the chair of "Geometria analitica con elementi di Geometria Proiettiva e Geometria Descrittiva con Disegno" awarded by the University of Parma.
The Editorial Board, ed. (1965), "Professori ordinari", Annuario dell'Università di Parma [Yearbook of the University of Parma], vol. A.A. 1964/1965, Parma: Università degli Studi di Parma.
The Editorial Board, ed. (1980), "Professori ordinari", Annuario dell'Università di Parma [Yearbook of the University of Parma], vol. A.A. 1979/80, Parma: Università degli Studi di Parma.
The Editorial Board, ed. (1995), "Professori ordinari", Annuario dell'Università di Parma [Yearbook of the University of Parma], vol. A.A. 1994/95, Parma: Università degli Studi di Parma.
Il Ministro dell'Università e della Ricerca Scientifica e Tecnologica (February 19, 1999), Decreto Ministeriale 17 Febbraio 1999 [Ministerial Decree 17 February 1999] (in Italian). The "Ministerial Decree" awarding the title of "Professor Emeritus" to Giovanni Battista Rizza.
Schreiber, Bruno (1973), Curriculum Vitæ di Giambattista Rizza [Curriculum Vitæ of Giambattista Rizza] (in Italian), Istituto di Matematica dell'Università di Parma, p. 4. The official 1973 CV of Giovanni Battista Rizza, available from the Institute of Mathematics of the University of Parma.
Venturini, Giancarlo (1963), "Prolusione all'apertura dell'A.A. 1962/63", Annuario dell'Università di Parma [Yearbook of the University of Parma], vol. A.A. 1962/63, Parma: Università degli Studi di Parma. The opening address on the occasion of the beginning of the academic year 1962/63, given by the Magnifico Rettore prof. G. Venturini.
Fichera, Gaetano (1982a), "Problemi al contorno per le funzioni pluriarmoniche", Atti del Convegno celebrativo dell'80° anniversario della nascita di Renato Calapso, Messina–Taormina, 1–4 aprile 1981 (in Italian), Roma: Libreria Eredi Virgilio Veschi, pp. 127–152, MR0698973, Zbl0958.32504. "Boundary value problems for pluriharmonic functions" (English translation of the title) deals with boundary value problems for pluriharmonic functions: Fichera gives a trace condition for the solvability of the problem and extensively reviews its history, starting from its beginning in the work of Henri Poincare and analyzing several earlier results of Enzo Martinelli, Giovanni Battista Rizza and Francesco Severi, as well as works of Aldo Andreotti among the others.
Severi, Francesco (1958), Lezioni sulle funzioni analitiche di più variabili complesse – Tenute nel 1956–57 all'Istituto Nazionale di Alta Matematica in Roma [Lectures on analytic functions of several complex variables – Lectured in 1956–57 at the Istituto Nazionale di Alta Matematica in Rome] (in Italian), Padova: CEDAM – Casa Editrice Dott. Antonio Milani, pp. XIV+255, Zbl0094.28002. A set of lecture notes from a course held by Francesco Severi at the Istituto Nazionale di Alta Matematica, including appendices of Enzo Martinelli, Giovanni Battista Rizza and Mario Benedicty.