In mathematics, the Gaussian isoperimetric inequality , proved by Boris Tsirelson and Vladimir Sudakov ,[ 1] and later independently by Christer Borell ,[ 2] states that among all sets of given Gaussian measure in the n -dimensional Euclidean space , half-spaces have the minimal Gaussian boundary measure .
Let
A
{\displaystyle \scriptstyle A}
be a measurable subset of
R
n
{\displaystyle \scriptstyle \mathbf {R} ^{n}}
endowed with the standard Gaussian measure
γ
n
{\displaystyle \gamma ^{n}}
with the density
exp
(
−
‖
x
‖
2
/
2
)
/
(
2
π
)
n
/
2
{\displaystyle {\exp(-\|x\|^{2}/2)}/(2\pi )^{n/2}}
. Denote by
A
ε
=
{
x
∈
R
n
|
dist
(
x
,
A
)
≤
ε
}
{\displaystyle A_{\varepsilon }=\left\{x\in \mathbf {R} ^{n}\,|\,{\text{dist}}(x,A)\leq \varepsilon \right\}}
the ε-extension of A . Then the Gaussian isoperimetric inequality states that
lim inf
ε
→
+
0
ε
−
1
{
γ
n
(
A
ε
)
−
γ
n
(
A
)
}
≥
φ
(
Φ
−
1
(
γ
n
(
A
)
)
)
,
{\displaystyle \liminf _{\varepsilon \to +0}\varepsilon ^{-1}\left\{\gamma ^{n}(A_{\varepsilon })-\gamma ^{n}(A)\right\}\geq \varphi (\Phi ^{-1}(\gamma ^{n}(A))),}
where
φ
(
t
)
=
exp
(
−
t
2
/
2
)
2
π
a
n
d
Φ
(
t
)
=
∫
−
∞
t
φ
(
s
)
d
s
.
{\displaystyle \varphi (t)={\frac {\exp(-t^{2}/2)}{\sqrt {2\pi }}}\quad {\rm {and}}\quad \Phi (t)=\int _{-\infty }^{t}\varphi (s)\,ds.}
Proofs and generalizations
The original proofs by Sudakov, Tsirelson and Borell were based on Paul Lévy 's spherical isoperimetric inequality .
Sergey Bobkov proved Bobkov's inequality , a functional generalization of the Gaussian isoperimetric inequality, proved from a certain "two point analytic inequality".[ 3] Bakry and Ledoux gave another proof of Bobkov's functional inequality based on the semigroup techniques which works in a much more abstract setting.[ 4] Later Barthe and Maurey gave yet another proof using the Brownian motion .[ 5]
The Gaussian isoperimetric inequality also follows from Ehrhard's inequality .[ 6] [ 7]
See also
References
^ Sudakov, V. N.; Tsirel'son, B. S. (1978-01-01) [Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 41, pp. 14–24, 1974]. "Extremal properties of half-spaces for spherically invariant measures" . Journal of Soviet Mathematics . 9 (1): 9– 18. doi :10.1007/BF01086099 . ISSN 1573-8795 . S2CID 121935322 .
^ Borell, Christer (1975). "The Brunn-Minkowski Inequality in Gauss Space" . Inventiones Mathematicae . 30 (2): 207– 216. Bibcode :1975InMat..30..207B . doi :10.1007/BF01425510 . ISSN 0020-9910 . S2CID 119453532 .
^ Bobkov, S. G. (1997). "An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space" . The Annals of Probability . 25 (1): 206– 214. doi :10.1214/aop/1024404285 . ISSN 0091-1798 .
^ Bakry, D.; Ledoux, M. (1996-02-01). "Lévy–Gromov's isoperimetric inequality for an infinite dimensional diffusion generator". Inventiones Mathematicae . 123 (2): 259– 281. doi :10.1007/s002220050026 . ISSN 1432-1297 . S2CID 120433074 .
^ Barthe, F.; Maurey, B. (2000-07-01). "Some remarks on isoperimetry of Gaussian type" . Annales de l'Institut Henri Poincaré B . 36 (4): 419– 434. Bibcode :2000AIHPB..36..419B . doi :10.1016/S0246-0203(00)00131-X . ISSN 0246-0203 .
^ Latała, Rafał (1996). "A note on the Ehrhard inequality" . Studia Mathematica . 2 (118): 169– 174. doi :10.4064/sm-118-2-169-174 . ISSN 0039-3223 .
^ Borell, Christer (2003-11-15). "The Ehrhard inequality". Comptes Rendus Mathématique . 337 (10): 663– 666. doi :10.1016/j.crma.2003.09.031 . ISSN 1631-073X .