Gady Kozma
Gady Kozma is an Israeli mathematician. Kozma obtained his PhD in 2001 at the University of Tel Aviv with Alexander Olevskii.[1] He is a scientist at the Weizmann Institute. In 2005, he demonstrated the existence of the scaling limit value (that is, for increasingly finer lattices) of the loop-erased random walk in three dimensions and its invariance under rotations and dilations.[2] A loop-erased random walk consists of a random walk, whose loops, which form when it intersects itself, are removed. This was introduced to the study of self-avoiding random walk by Gregory Lawler in 1980,[3] but is an independent model in another universality class. In the two-dimensional case, conformal invariance was proved by Lawler, Oded Schramm and Wendelin Werner (with Schramm–Loewner evolution) in 2004.[4] The cases of four and more dimensions were treated by Lawler, the scale limiting value is Brownian motion, in four dimensions. Kozma treated the two-dimensional case in 2002 with a new method. In addition to probability theory, he also deals with Fourier series.[5] In 2008 he received the Erdős Prize and in 2010 the Rollo Davidson Prize. He is an editor of the Journal d'Analyse Mathématique.[6] References
|