Furstenberg's proof of the infinitude of primesIn mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences.[1][2] Unlike Euclid's classical proof, Furstenberg's proof is a proof by contradiction. The proof was published in 1955 in the American Mathematical Monthly while Furstenberg was still an undergraduate student at Yeshiva University. Furstenberg's proofDefine a topology on the integers , called the evenly spaced integer topology, by declaring a subset U ⊆ to be an open set if and only if it is a union of arithmetic sequences S(a, b) for a ≠ 0, or is empty (which can be seen as a nullary union (empty union) of arithmetic sequences), where Equivalently, U is open if and only if for every x in U there is some non-zero integer a such that S(a, x) ⊆ U. The axioms for a topology are easily verified:
This topology has two notable properties:
The only integers that are not integer multiples of prime numbers are −1 and +1, i.e. Now, by the first topological property, the set on the left-hand side cannot be closed. On the other hand, by the second topological property, the sets S(p, 0) are closed. So, if there were only finitely many prime numbers, then the set on the right-hand side would be a finite union of closed sets, and hence closed. This would be a contradiction, so there must be infinitely many prime numbers. Topological propertiesThe evenly spaced integer topology on is the topology induced by the inclusion , where is the profinite integer ring with its profinite topology. It is homeomorphic to the rational numbers with the subspace topology inherited from the real line,[3] which makes it clear that any finite subset of it, such as , cannot be open. Notes
References
External links |