Let B be a standard Brownian motion on Rd starting at the origin, 0 ∈ Rd, and let Xε be an Rd-valued Itō diffusion solving an Itō stochastic differential equation of the form
where the drift vector fieldb : Rd → Rd is uniformly Lipschitz continuous. Then, on the Banach spaceC0 = C0([0, T]; Rd) equipped with the supremum norm ||⋅||∞, the family of processes (Xε)ε>0 satisfies the large deviations principle with good rate function I : C0 → R ∪ {+∞} given by
if ω lies in the Sobolev spaceH1([0, T]; Rd), and I(ω) = +∞ otherwise. In other words, for every open setG ⊆ C0 and every closed setF ⊆ C0,
and
References
Freidlin, Mark I.; Wentzell, Alexander D. (1998). Random perturbations of dynamical systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 260 (Second ed.). New York: Springer-Verlag. pp. xii+430. ISBN0-387-98362-7. MR1652127
Dembo, Amir; Zeitouni, Ofer (1998). Large deviations techniques and applications. Applications of Mathematics (New York) 38 (Second ed.). New York: Springer-Verlag. pp. xvi+396. ISBN0-387-98406-2. MR1619036 (See chapter 5.6)