Eisenstein discovered that the Fermat quotient with base 2 could be expressed in terms of the sum of the reciprocals modulo p of the numbers lying in the first half of the range {1, ..., p − 1}:
Later writers showed that the number of terms required in such a representation could be reduced from 1/2 to 1/4, 1/5, or even 1/6:
If qp(a) ≡ 0 (mod p) then ap−1 ≡ 1 (mod p2). Primes for which this is true for a = 2 are called Wieferich primes. In general they are called Wieferich primes base a. Known solutions of qp(a) ≡ 0 (mod p) for small values of a are:[2]
^Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem (1979), especially pp. 152, 159-161.
^Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory (2000), p. 216.
^Gotthold Eisenstein, "Neue Gattung zahlentheoret. Funktionen, die v. 2 Elementen abhangen und durch gewisse lineare Funktional-Gleichungen definirt werden," Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königl. Preuß. Akademie der Wissenschaften zu Berlin 1850, 36-42
^Dmitry Mirimanoff, "Sur la congruence (rp − 1 − 1):p = qr (mod p)," Journal für die reine und angewandte Mathematik115 (1895): 295-300
^Sondow, Jonathan (2014). "Lerch quotients, Lerch primes, Fermat-Wilson quotients, and the Wieferich-non-Wilson primes 2, 3, 14771". arXiv:1110.3113 [math.NT].
^Sondow, Jonathan; MacMillan, Kieren (2011). "Reducing the Erdős-Moser equation modulo and ". arXiv:1011.2154 [math.NT].
^James Whitbread Lee Glaisher, "On the Residues of rp − 1 to Modulus p2, p3, etc.," Quarterly Journal of Pure and Applied Mathematics32 (1901): 1-27.
^Ladislav Skula, "A note on some relations among special sums of reciprocals modulo p," Mathematica Slovaca58 (2008): 5-10.
^Emma Lehmer, "On Congruences involving Bernoulli Numbers and the Quotients of Fermat and Wilson," Annals of Mathematics39 (1938): 350–360, pp. 356ff.
^Karl Dilcher and Ladislav Skula, "A New Criterion for the First Case of Fermat's Last Theorem," Mathematics of Computation64 (1995): 363-392.
^James Whitbread Lee Glaisher, "A General Congruence Theorem relating to the Bernoullian Function," Proceedings of the London Mathematical Society33 (1900-1901): 27-56, at pp. 49-50.