European Synchrotron Radiation Facility
The European Synchrotron Radiation Facility (ESRF) is a joint research facility situated in Grenoble, France, supported by 22 countries (13 member countries: Belgium, Denmark, Finland, France, Germany, Italy, the Netherlands, Norway, Russia, Spain, Sweden, Switzerland, and the UK; and 9 associate countries: Austria, the Czech Republic, Hungary, India, Israel, Poland, Portugal, Slovakia, and South Africa).[1] Some 8,000 scientists visit this particle accelerator each year, conducting upwards of 2,000 experiments and producing around 1,800 scientific publications.[2] HistoryInaugurated in September 1994, it has an annual budget of around 100 million euros,[3] employs over 630 people and is host to more than 7,000 visiting scientists each year. In 2009, the ESRF began a first major improvement in its capacities. With the creation of the new ultra-stable experimental hall of 8,000 m2 in 2015, its X-rays are 100 times more powerful, with a power of 100 billion times that of hospital radiography devices.[4] The second improvement to the facilities, now named the "Extremely Brilliant Source" (ESRF-EBS), took place between 2018 and 2020. and again improved its X-ray power by a factor of 100,[5] or 10,000 billion more powerful than X-rays used in the medical field. It became the first fourth-generation high-energy synchrotron in the world.[6] The first electron beam tests began on November 28, 2019.[7] The facility reopened to users on August 25, 2020.[8] General descriptionThe ESRF physical plant consists of two main buildings: the experiment hall, containing the 844 metre circumference ring and forty tangential beamlines; and a block of laboratories, preparation suites, and offices connected to the ring by a pedestrian bridge. The linear accelerator electron gun and smaller booster ring used to bring the beam to an operating energy of 6 GeV are constructed within the main ring. Until recently bicycles were provided for use indoors in the ring's circumferential corridor. Unfortunately they have been removed after some minor accidents. But even before this it was not possible to cycle continuously all the way around, since some of the beamlines exit the hall. Research at the ESRF focuses, in large part, on the use of X-ray radiation in fields as diverse as protein crystallography, earth science, paleontology, materials science, chemistry and physics. Facilities such as the ESRF offer a flux, energy range and resolution unachievable with conventional (laboratory) radiation sources. Study resultsIn 2014, ancient books destroyed by the eruption of Mount Vesuvius in 79 were read for the first time in the ESRF. These 1840[clarification needed] fragments were reduced to the status of charred cylinders.[9][10] In 2015, scientists from the University of Sheffield used the ESRF's X-rays to study the blue and white feathers of the jay, and found that the birds use well-controlled changes to the nanostructure of their feathers to create the vivid colours of their plumage. This research opened new possibilities for creating non-fading, synthetic colours for paints and clothing.[11] In July 2016, a team of South African researchers scanned a complete fossilized skeleton of a small dinosaur discovered in 2005 in South Africa and more than 200 million years old. The dentition of heterodontosauridae, when scanned, revealed palate bones less than a millimeter thick.[12][13] On December 6, 2017, the journal Nature unveiled the discovery at the European synchrotron of a new species of dinosaur with surprising characteristics that lived about 72 million years ago. It is a biped, with some features of a velociraptor, an ostrich and a swan, with a crocodile-like muzzle and penguin-like wings. With a height of about 1.2 meters (4 ft) and with killer claws, it could hunt his prey on the ground or by swimming in the water, which is a novelty for scientists in the study of dinosaurs.[14] In November 2021, researchers demonstrated a novel X-ray imaging technique, "HiP-CT", for 3D cellular-resolution scans of whole organs, using the ESRF's "Extremely Brilliant Source". The published online Human Organ Atlas includes the lungs from a donor who died with COVID-19.[15][16][17] In October 2024, First Light Fusion, in collaboration with the University of Oxford's Department of Engineering Science, performed an experiment on inertial fusion on the ID19 beamline to investigate the formation and transit of shock waves through some of First Light Fusion’s amplifiers.[18] AccessThe ESRF site forms part of the "Polygone Scientifique", lying at the confluence of the rivers Drac and Isère about 1.5 km from the centre of Grenoble. It is served by Grenoble tramway system and local bus lines of Semitag (C6, 22 and 54). It is served by Grenoble–Isère Airport and Lyon–Saint-Exupéry Airport. The ESRF shares its site with several other institutions including the Institut Laue-Langevin (ILL), the European Molecular Biology Laboratory (EMBL) and the Institut de biologie structurale . The Centre national de la recherche scientifique (CNRS) has an institute across the road. People
See also
References
External linksWikimedia Commons has media related to European Synchrotron Radiation Facility.
|