Engineered bamboo is a set of composite products produced from bamboo. It is designed to be a replacement for wood[1] or engineered wood, but is used only when high load bearing strength is not required[2] because building standards for this type of use have not been agreed by regulatory bodies.[3] Engineered bamboo comes in several different forms, including bamboo scrimber and laminated bamboo,[4] which has three times the structural capacity as normal timber[5] and is defined and regulated by the ASTM International Standards.[6]
Engineered bamboo has been used as paneling, vehicle beds, concrete formworks,[2] lightweight building construction[7] and even for shelters after the 2004 tsunami.[8] In comparison to the woods that have been traditionally used, a number of benefits and drawbacks have been identified. Lower cost, especially when replacing wood that would otherwise have been imported, is a key advantage.[9] Further benefits include greater hardness and shape retention, especially in high temperatures.[10]
However, bamboo is not as resilient as most woods and will decay more rapidly than other woods if not treated with preservatives.[11]
New building methods have had to be developed for engineered bamboo as its properties are sufficiently different, and make normal wood-working methods used with (non-engineered) bamboo unsuitable.[12]
In order to overcome the typical loss of strength bamboo incurs when bending takes place post-harvest, an alternative method to overcome this has been developed.
Pre-harvest bending of the bamboo stems in zig-zags, allows the bamboo to later form a Warren truss.[13]
Alexander Vittouris has proposed a much simpler 2D S-bend shape, which—after harvesting, and in sufficient quantities—could be assembled into a variety of 3D shapes. The arboriculture technique used to make both shapes is similar to tree shaping, and result in parts similar to woodworking knees.[14][15][16][17]
References
^Yan Xiao; Masafumi Inoue; Shyam K. Paudel (2008). Modern bamboo structures: proceedings of First International Conference on Modern Bamboo Structures. CRC Press. ISBN978-0415475976.
^B. Sharma; A. Gatoo; M. Bock; H. Mulligan; M. Ramage (October 2014). "Engineered bamboo: state of the art". Proceedings of the ICE - Construction Materials. 168 (2): 57–67. doi:10.1680/coma.14.00020.
^Wu Xing (March 31, 2010). "My Boo (Lamboo)". Architerials. Archived from the original on June 9, 2013. Retrieved May 28, 2013.
^Jorge A. Gutiérrez (2000). Structural Adequacy of Traditional Bamboo Housing in Latin America. National Laboratory for Materials and Structural Models, Civil Engineering Department, University of Costa Rica. ISBN8186247440.
^Merlyn Carmelita N. Rivera. Silvicultural management of bamboo in the Philippines and Australia for shoots and timber. Australian Centre for International Agricultural Research. p. 11.