Energy in Poland

Power grid of 400/220/110 kV power lines in 2022

The Polish energy sector is the fifth largest in Europe.[1] By the end of 2023, the installed generation capacity had reached 55.216 GW,[2] while electricity consumption for that year was 167.52 TWh and generation was 163.63 TWh,[3] with 26% of this coming from renewables.[4]

In detail, the data presents as follows (year-over-year changes from 2022 in brackets):[2][3][4]

  • Installed generation capacity: 55.216 GW (Increase 9.82%)
  • Electricity consumption: 167.52 TWh ( 3.44%)
  • Electricity generation: 163.63 TWh (Neutral decrease 6.58%)
    • Renewables: 39.42 TWh (Increase 34.72%)
      • Wind: 22.12 TWh (Increase 20.18%)
      • Solar: 13.22 TWh
      • Biomass: 2.12 TWh
      • Hydropower: 1.81 TWh
    • Fossil:
      • Hard-coal: 76.61 TWh ( 12.71%)
      • Lignite: 34.57 TWh ( 26.41%)
      • Gas: 13.65 TWh (Negative increase 36.48%)
      • Oil: 2.54 TWh

Poland's 2040 energy plan

Poland's energy and climate policies are primarily outlined in two documents: the National Energy and Climate Plan (NECP), which is mandatory for all countries in the European Union (EU), and the country-specific Energy Policy of Poland 2040 (EPP2040). The NECP lays out the necessary policies and measures for Poland to meet its energy sector goals as established by EU directives. Meanwhile, the EPP2040 serves as the national framework for the country's energy transition, aligned with the NECP, with the aim of putting the country on a path to a zero-carbon economy.[5]

PEP2040 is a government plan for the Polish fuel and energy sector, which envisions expanding renewables capacity, building offshore wind farms, and commissioning a nuclear power plant.[6] The plan was adopted in February 2021,[5] aiming to tackle climate change, energy security, and a just transition.[7] Poland aims to build 6–9 GW of nuclear power by 2040,[8] with the first reactor operational by 2032 or 2033.[9]

Energy statistics

2020 energy statistics[10]
Production capacities for electricity
(TWh)
Type Amount
Fossil fuel 330.43
Wind power 44.72
Biomass 24.84
Hydro 8.28
Solar 5.80
Total 414.07
     
Electricity
(TWh)
Category Amount
Consumption 149.20
Production 145.93
Import 20.62
Export 7.36
     
Natural Gas
(billion m3)
Consumption 21.46
Produce 5.67
Import 16.63
Export 0.70
     
Crude Oil
(barrels per day)
Consumption 254,660,000
Production 10,370,000
Import 197,870,000
Export 2,190,000

CO2 emissions:
279.22 million tons

Poland electricity generation by source

Fossil fuels

Coal

In 2009 Poland produced 78 megatonnes (Mt) of hard coal and 57 Mt of brown coal. As of 2020, extraction is becoming increasingly difficult and expensive, and has become uncompetitive so reliant on government subsidies.[11][12] In September 2020, the government and mining unions agreed a plan to phase out coal by 2049,[13] with coal used in power generation falling to negligible levels in 2032.[14]

The Bełchatów Power Station in the Łódź region supplies almost 20% of Poland's energy. It is the largest brown coal power plant in the EU, and also the single biggest source of CO2 emissions in the region.[15]

In 2020, coal played a significant role in Poland's energy mix, making up 69.5% of the nation's energy production and 68.5% of its electricity generation. It accounted for 40.2% of the Total Energy Supply (TES). The largest portion of coal consumption was in electricity and heat generation, representing 75.6% of the total demand. The industrial sector followed, utilizing 14.5%, and buildings were responsible for 9.9% of coal usage.[16][5]

Gas

During the April 2022 Russia–European Union gas dispute, Russia cut off natural gas deliveries to Poland after demanding to be paid in Russian rubles during currency disruptions caused by the 2022 Russian invasion of Ukraine.[17]

In September 2022 a gas pipeline connecting Poland with Denmark, allowing gas from Norway to pass through to Poland was commissioned.[18]

In 2020, natural gas constituted a notable component of Poland's energy mix, representing 6% of energy production and 17% of the Total Energy Supply (TES). The industrial sector emerged as the primary consumer, consuming 49% of the total natural gas. Residential buildings followed with a 23% share, co-generation processes accounted for 19%, service sector buildings utilized 7%, and the transport sector comprised the smallest share at 2%.[5]

Renewable energy

Renewable energy as part of the energy mix
2013[19] 2014[19] 2015[20] 2016[20] 2017[20] 2018[20] 2019[21] 2020[21] 2021[21] 2022[22]
Renewable energy share of heating and cooling sector 14.07% 13.95% 14.54% 14.68% 14.48% 14.56% 22,00% 22.14% 21.00% 22.71%
Renewable energy share of electricity sector 10.73% 12.40% 13.43% 13.36% 13.09% 13.03% 14.36% 16.24% 17.17% 21.01%
Renewable energy share of transport sector 6.03% 5.67% 5.62% 3.92% 4.20% 5.63% 6.20% 6.58% 5.66% 5.53%
Renewable energy share of total energy consumption 11.34% 11.45% 11.74% 11.27% 10.90% 11.16% 15.38% 16.13% 15.61% 16.81%

Sources

Biomass and waste

As of 2015 Biomass and waste was the largest source of renewable energy in Poland providing an estimated 8.9% of total primary energy supply (TPES) in that year and an estimated 6.1% of electricity generation.[23] In 2019 there were 1,142 MW installed capacity power.[24]

Solid biomass is the most important source by volume, providing fuel for heat and power plants or consumed directly for industrial or household heat requirements. Biogasses are also used in heat and power plants as well whilst waste is mainly used as a fuel in industry.[23] In 2014 0.7 Mtoe of biofuels were used in transport, 81% as biodiesel and 19% as biogasoline, making up 5% of the total energy consumption in the transport sector in 2014.[23]

Wind power

As of December 31, 2023, Poland had a total of 9,428.3 MW in wind power grid-connected capacity.[25][26] Poland's 2040 energy plan (PEP2040) forecasts that the country will install up to 20 GW of land-based grid-connected wind power.[27] However, a report from April 2024 highlights that Poland's integration of wind power into the national grid has encountered significant challenges. Despite ambitious plans for expansion, the practical implementation faces operational difficulties. For instance, due to favorable weather conditions leading to an electricity oversupply, wind farms with a capacity of about 1.9 gigawatts had to be shut down on a specific Sunday. This curtailment was part of a broader adjustment affecting 4.5 gigawatts of renewable energy, necessitated by low demand at the time, even though renewables were supplying over half of the national power demand, which stood at 17.7 gigawatts. This incident underscores the complex challenges of managing intermittent energy sources within a grid that still relies significantly on coal. With a current installed capacity of 10.1 gigawatts, Poland continues to navigate the intricacies of integrating a growing share of renewable energy into its power infrastructure.[28]

Wind turbines in Wałdowo

Offshore wind

In September 2020, the government announced a 130 billion zloty (£26.5 billion) plan to invest in offshore wind.[13]

Poland's "Offshore Wind Act" came into force in 2020.[29] The main purpose of the Act is to set the framework for a dedicated subsidy scheme for offshore wind projects. However, it also addresses other relevant issues pertaining to the development and operation of offshore projects.[30]

According to Polish Wind Energy Association (PWEA), offshore wind farms in the Baltic Sea with an overall capacity of 5.9 GW are set to "receive support under a two-sided contract for difference between the investor and the regulator. Awarding support under this formula will be time-limited until the end of June 2021." In a second phase, contracts are planned to be awarded by auctions. The first is to take place in 2025. The PWEA said that support will be available for projects with a total capacity of 2.5 GW in each of the auctions.[31] By 2050, Poland wants a massive 28 GW in offshore sector, which would make Poland the largest operator of offshore wind in the Baltic Sea.[32]

On 1 July 2020 representatives of the Polish government and Polish wind energy industry signed a “Letter of Intent on cooperation for development of offshore wind power in Poland”. The letter acknowledges the role of offshore wind in meeting the European Union's Green Deal objectives while increasing the security of energy supply and reducing Poland's CO2 emissions.[33]

In its National Energy and Climate Plan (NECP) Poland identified offshore wind as one of key technologies to meet its goals for renewable energy for 2030. Offshore wind has also been described as strategic in the draft of Poland's Energy Policy until 2040, with around 19 GW forecast to be constructed.[27] It will help with diversifying Poland's national power generation structure that today heavily depends on coal.[34]

Hydroelectric power

Name Location Coordinates Capacity (MWe) Type Ref
Żarnowiec Pomorskie 680 pumped storage [35]
Żar Śląskie 500 pumped storage [36]
Solina Solina 200 pumped storage [37]
Włocławek Kujawsko-Pomorskie 160 river dam [38]
Żydowo Zachodniopomorskie 150 pumped storage [39]
Niedzica Małopolskie 92.75 pumped storage [40][41]
Dychów Lubuskie 90 pumped storage [42]
Rożnów Małopolskie 50 run of the river [43][44]
Grajówka Lubuskie 2.79 run of the river [45][46]
Future planned plants
Młoty (slated to be completed by 2030) Dolnośląskie 1050 pumped storage [47]

A 2023 study suggested that Poland is currently only using around 15% of its total hydroelectric power capacity.[48] Poland currently has 786 hydroelectric power plants, the vast majority of which (705) are relatively small, generating no more than 1 MW. Many of the smaller power plants are privately owned by small firms and family businesses, with the bigger ones owned by major electricity producers or the state.[48]

Solar power

In 2019, the Polish government launched a scheme called "Mój Prąd",[49] which is dedicated to supporting the development of prosumer energy, and specifically supporting the segment of photovoltaic (PV) micro-installations. The budget of the program is currently PLN 1.1 billion.[50]

As a result, in recent years there has been a significant increase in power in this segment of the energy sector. The total solar photovoltaics (PV) grid-connected capacity in Poland was 17,057.1 MW as of 31 December 2023.[51][52]

PV in Poland (MWpeak)[53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][51]
2005 2010 2015 2016 2017 2018 2020 2021 2022 2023
0.3 2 110.9 193.9 287 486.5 3,960 7,670 12,189 17,057
PV in Poland (MWpeak)
5,000
10,000
15,000
20,000
2009
2010
2011
2012
2013
2014
2015
2020
2021
2022
2023

Nuclear power

Poland is planning to have its first nuclear reactor built by 2032-33.[9]

Poland aims to integrate nuclear energy into its Energy Policy of Poland 2040, with plans to operationalize its first nuclear reactor, having a capacity of 1,250 MW by 2036, 3,750 MW by 2038,[68] and to establish six reactors with a combined capacity of 6–9 GW by 2043. This initiative is expected to enable nuclear power to contribute up to 16% of the nation's energy generation by 2040. The Polish Nuclear Power Programme (PNPP), launched in 2014 and updated in 2020, details these objectives, including safety, decommissioning, and waste management.[5]


Pumped hydro and battery storage

As of 2020, Poland had 1.7 GW of pumped hydro capacity and 9 MW of battery storage capacity. Those systems are mainly used for system balancing. As part of its 2040 energy plan, Poland aims to build an additional 1 GW of energy storage (which does not include any additional pumped hydro capacities).[69]

See also

References

  1. ^ "Europe – Countries & Regions". IEA. Archived from the original on 2023-05-29. Retrieved 2023-11-16.
  2. ^ a b "Installed Capacity per Production Type". ENTSO-E Transparency Platform. 2024-06-04. Retrieved 2024-06-04.
  3. ^ a b "PSE: Krajowe zużycie energii elektrycznej spadło o 3,44% r/r w 2023 r. - WysokieNapiecie.pl". wysokienapiecie.pl (in Polish). 2024-01-15. Archived from the original on 2024-01-15. Retrieved 2024-02-28.
  4. ^ a b Ptak, Alicja (2024-01-03). "Poland produced record 26% of electricity from renewables in 2023". Notes From Poland. Retrieved 2024-06-04.
  5. ^ a b c d e "Poland 2022 - Energy Policy Review" (PDF). International Energy Agency.
  6. ^ "Minister Kurtyka: "Polityka energetyczna Polski do 2040 r." udziela odpowiedzi na najważniejsze wyzwania stojące przed krajową energetyką w najbliższych dziesięcioleciach".
  7. ^ "Zaktualizowany projekt Polityki energetycznej Polski do 2040 r."
  8. ^ S.A, PGE Systemy. "About the Company". ppej.pl.
  9. ^ a b "Koniec czekania. Polska będzie miała elektrownię jądrową. Atomowy kontrakt podpisany". nextgazetapl (in Polish). 2023-09-27. Retrieved 2023-11-26.
  10. ^ "Energy consumption in Poland". 2020.
  11. ^ "Poland to subsidise coal power amid high CO2 prices – deputy PM". www.thefirstnews.com. Retrieved 2021-12-20.
  12. ^ "Polish govt, unions initial plan to phase out coal by 2049". AP NEWS. 2021-04-28. Retrieved 2021-12-20.
  13. ^ a b Gatten, Emma; Suszko, Agnieszka (22 October 2020). "Can Poland, the dirty man of Europe, end its love affair with coal?". The Daily Telegraph. Retrieved 23 October 2020.
  14. ^ "Economics to Drive Coal Decline, Renewables Growth in Poland". 6 February 2023.
  15. ^ "Bełchatów wciąż emituje najwięcej dwutlenku węgla w Europie". Rzeczpospolita (in Polish). Retrieved 2023-11-16.
  16. ^ "Poland 2022 – Analysis". IEA. Retrieved 2024-03-07.
  17. ^ "Russia cuts gas supplies to Poland and Bulgaria". NPR. Archived from the original on 2023-04-18.
  18. ^ "CEF Energy: the Baltic Pipe celebrates its commissioning in Poland". 27 September 2022.
  19. ^ a b "Progress reports – Energy – European Commission". Energy. 31 July 2014. Retrieved 2016-07-02.
  20. ^ a b c d "Renewable energy in Poland in 2018" (PDF) (in Polish). Statistics Poland. 18 November 2019. Retrieved 26 March 2020.
  21. ^ a b c "Renewable energy in Poland in 2021" (PDF) (in Polish). Statistics Poland. 20 December 2022. Retrieved 16 March 2023.
  22. ^ "Energia ze źródeł odnawialnych w 2022 r." (PDF). Statistics Poland. Archived (PDF) from the original on 2024-02-24. Retrieved 2024-02-24.
  23. ^ a b c "Publication: Energy Policies of IEA Countries – Poland 2016 Review". www.iea.org. Retrieved 2017-06-03.
  24. ^ IRENA (2020). Renewable capacity statistics 2020 International Renewable Energy Agency (IRENA) (PDF). ISBN 978-92-9260-239-0.
  25. ^ "Moc zainstalowana farm wiatrowych w Polsce | Rynek Elektryczny".
  26. ^ [1]
  27. ^ a b Perzyński, Jacek (2023-06-13). "Do 2040 roku Polska na transformację energetyczną wyda ponad 726 mld zł". BiznesAlert.pl. Archived from the original on 2023-06-27. Retrieved 2024-02-24.
  28. ^ "Poland Curbs Output From Wind and Solar Farms Amid Oversupply". Bloomberg.com. 2024-04-14. Retrieved 2024-04-15.
  29. ^ "The birth of offshore wind in Poland". WindEurope. 2020-07-02. Retrieved 2020-11-22.
  30. ^ "Polish Offshore Wind Act – current status". www.cms-lawnow.com. Retrieved 2020-11-22.
  31. ^ "Poland creates legal framework for offshore wind development in the Baltic Sea". Pinsent Masons. Retrieved 2020-11-22.
  32. ^ "Poland adopts historic Offshore Wind Act". WindEurope. 14 January 2021. Retrieved 27 June 2023.
  33. ^ "Polish Govt and Wind Energy Industry Sign Offshore Wind Co-Op Deal". Offshore Wind. 2020-07-02. Retrieved 2020-11-22.
  34. ^ Vizzuality. "Energy Policy of Poland unt... – Poland – Climate Change Laws of the World". climate-laws.org. Retrieved 2020-11-22.
  35. ^ "Zarnowiec Pumped Storage Hydroelectric Power Plant". Global Energy Observatory. Retrieved 1 March 2014.
  36. ^ "Porabka-Zar Pumped Storage Power Plant Poland". Global Energy Observatory. Retrieved 1 March 2016.
  37. ^ "DHV Hydroprojekt Sp. z o.o." www.dhvhydroprojekt.com.pl (in Polish). Archived from the original on 2017-07-08. Retrieved 2017-06-22.
  38. ^ "Hydroelectric Power Plants in Poland – Pomorskie". Gallery. Power Plants Around The World. 8 February 2009. Archived from the original on February 28, 2014. Retrieved 1 March 2014.
  39. ^ "Zydowo Pumped Storage Hydroelectric Power Plant". Global Energy Observatory. Retrieved 1 March 2014.
  40. ^ "ZEW Niedzica S.A." (in Polish). Archived from the original on 30 October 2014. Retrieved 30 October 2014.
  41. ^ Administrator. "Hydro Power Plants". www.energoprojekt.pl. Archived from the original on 2017-10-08. Retrieved 2017-06-25.
  42. ^ "ZEW Dychów" (in Polish). Retrieved 30 October 2014.
  43. ^ "TAURON Ekoenergia Sp. z o.o." (in Polish). Archived from the original on 30 October 2014. Retrieved 30 October 2014.
  44. ^ "Central and Eastern European Hydroelectric Power Outlook, KPMG" (PDF). Archived from the original (PDF) on 2013-02-28. Retrieved 2017-06-25.
  45. ^ "ZEW Dychów" (in Polish). Archived from the original on 21 August 2014. Retrieved 30 October 2014.
  46. ^ "Grajówka". www.pgeeo.pl. Retrieved 2017-06-25.
  47. ^ "Na śląsku powstanie nowa elektrownia szczytowo-pompowa!". GLOBENERGIA (in Polish). 2023-10-20. Archived from the original on 2024-02-24. Retrieved 2024-02-24.
  48. ^ a b "Rośnie znaczenie energetyki wodnej". www.sodr.pl (in Polish). Retrieved 2023-11-15.
  49. ^ "Informacje szczegółowe o programie". Mój Prąd (in Polish). Archived from the original on 2020-11-28. Retrieved 2020-11-22.
  50. ^ "Fotowoltaika: w listopadzie koniec budżetu "Mój prąd". Będzie bonus?". WysokieNapiecie.pl (in Polish). 2020-10-20. Retrieved 2020-11-22.
  51. ^ a b "Moc zainstalowana fotowoltaiki w Polsce | Rynek Elektryczny".
  52. ^ [2]
  53. ^ Photovoltaic energy barometer 2009 – EurObserv’ER[permanent dead link] Systèmes solaires Le journal des énergies renouvelables n° 190, p. 72-102, 3/2009
  54. ^ Photovoltaic energy barometer 2007 – EurObserv’ER[permanent dead link] Systèmes solaires Le journal des énergies renouvelables n° 178, p. 49-70, 4/2007
  55. ^ Photovoltaic energy barometer 2010 – EurObserv’ER[permanent dead link]
  56. ^ Photovoltaic energy barometer 2011 – EurObserv’ER[permanent dead link]
  57. ^ "Photovoltaic energy barometer 2012 – EurObserv'ER". eurobserv-er.org.[permanent dead link]
  58. ^ Photovoltaic energy barometer 2013 – EurObserv’ER
  59. ^ Photovoltaic energy barometer 2014 – EurObserv’ER
  60. ^ "Photovoltaic barometer 2016 - EurObserv'ER". www.eurobserv-er.org. 28 November 2015.
  61. ^ "Photovoltaic energy barometer 2017 – EurObserv'ER". 28 November 2016.
  62. ^ "Photovoltaic energy barometer 2018 – EurObserv'ER". 28 April 2018.
  63. ^ "Photovoltaic energy barometer 2019 – EurObserv'ER". 7 May 2019.
  64. ^ "Moc fotowoltaiki w Polsce przekroczyła 3 GW". WysokieNapiecie.pl (in Polish). 4 November 2020.
  65. ^ "Moc fotowoltaiki w Polsce wyniosła 3,1 GW – Stowarzyszenie Energii Odnawialnej". SEO.org.pl (in Polish). 6 November 2020.
  66. ^ "Polish solar capacity grows 9% in September". Montel. 4 November 2020. Retrieved 14 August 2021.
  67. ^ "Łączna moc zainstalowana w fotowoltaice sięga 3960 MW". GLOBEnergia (in Polish). 11 February 2021. Archived from the original on 2 August 2021. Retrieved 14 August 2021.
  68. ^ "O projekcie" [About the project] (in Polish). Polskie Elektrownie Jądrowe. Retrieved 2024-12-28.
  69. ^ "Poland Electricity Security Policy – Analysis". IEA. Archived from the original on 2023-09-26. Retrieved 2024-02-24.