Endolith

Endolith lifeform found inside an Antarctic rock

An endolith or endolithic is an organism (archaeon, bacterium, fungus, lichen, algae or amoeba) that is able to acquire the necessary resources for growth in the inner part of a rock,[1] mineral, coral, animal shells, or in the pores between mineral grains of a rock. Many are extremophiles, living in places long considered inhospitable to life. The distribution, biomass, and diversity of endolith microorganisms are determined by the physical and chemical properties of the rock substrate, including the mineral composition, permeability, the presence of organic compounds, the structure and distribution of pores, water retention capacity, and the pH.[2][3][4][5] Normally, the endoliths colonize the areas within lithic substrates to withstand intense solar radiation, temperature fluctuations, wind, and desiccation.[6] They are of particular interest to astrobiologists, who theorize that endolithic environments on Mars and other planets constitute potential refugia for extraterrestrial microbial communities.[7][8]

Subdefinitions

The term "endolith", which defines an organism that colonizes the interior of any kind of rock, has been further classified into five subclasses:[9]

Chasmoendolith
Colonizes fissures and cracks in the rock connected to the surface (chasm = cleft)
Cryptoendolith
Colonizes structural cavities within natural pore spaces within the rocks. These pores are usually indirectly connected to the rock surface; (crypto = hidden)
Euendolith
Penetrates actively into the interior of rocks forming channels and grooves that conform with the shape of its body, rock boring organism (eu = true)
Hypoendolith
Colonizes the pore spaces located on the underside of the rock and that make contact with the soil (hypo = under)
Autoendolith
Capable of rocks formation by mineral depositation (auto = self)

Environment

Endolithic microorganisms have been reported in many areas around the globe. There are reports in warm hyper-arid and arid deserts such as Mojave and Sonora (USA), Atacama (Chile), Gobi (China, Mongolia), Negev (Israel), Namib (Namibia Angola), Al-Jafr basin (Jordan) and the Depression of Turpan (China),[note 1], also in cold deserts as Arctic and Antarctic,[note 2] and deep subsoil and ocean trenches rocks.[26] However, there are reports of endolithic microorganisms in inter-tropical zones,[27] where humidity and solar radiation are significantly different from the above-mentioned biomes. Endoliths have been found in the rock down to a depth of 3 kilometers (1.9 mi), though it is unknown if that is their limit (due to the cost involved in drilling to such depths).[28][29] The main threat to their survival seems not to result from the pressure at such depth, but from the increased temperature. Judging from hyperthermophile organisms, the temperature limit is at about 120 °C (Strain 121 can reproduce at 121 °C), which limits the possible depth to 4-4.5 km below the continental crust, and 7 or 7.5 km below the ocean floor. Endolithic organisms have also been found in surface rocks in regions of low humidity (hypolith) and low temperature (psychrophile), including the Dry Valleys and permafrost of Antarctica,[30] the Alps,[31] and the Rocky Mountains.[32][33]

Metabolism and survival

The metabolism of endolithic microorganisms is versatile, in many of those communities have been found genes involved in sulphur metabolism, iron metabolism and carbon fixation. In addition, whether they metabolize these directly from the surrounding rock, or rather excrete an acid to dissolve them first is yet undetermined. According to Meslier & DiRuggiero [34] there are found genes in the endolithic community involved in nitrogen fixation. The Ocean Drilling Program found microscopic trails in basalt from the Atlantic, Indian, and Pacific oceans that contain DNA.[35][36] Photosynthetic endoliths have also been discovered.[37]

As water and nutrients are rather sparse in the environment of the endolith, water limitation is a key factor in the capacity of survival of many endolithic microorganisms, many of those microorganisms have adaptations to survive in low concentrations of water.[34] Besides, the presence of pigments, especially in cyanobacteria and some algae, such as; beta carotenes and chlorophyll help them in the protection against dangerous radiation and is a way to obtain energy.[38] Another characteristic is the presence of a very slow reproduction cycle. Early data suggest some only engage in cell division once every hundred years. In August 2013 researchers reported evidence of endoliths in the ocean floor, perhaps millions of years old and reproducing only once every 10,000 years.[39] Most of their energy is spent repairing cell damage caused by cosmic rays or racemization, and very little is available for reproduction or growth. It is thought that they weather long ice ages in this fashion, emerging when the temperature in the area warms.[29]

Ecology

As most endoliths are autotrophs, they can generate organic compounds essential for their survival on their own from inorganic matter. Some endoliths have specialized in feeding on their autotroph relatives. The micro-biotope where these different endolithic species live together has been called a subsurface lithoautotrophic microbial ecosystem (SLiME),[40] or endolithic systems within the subterranean lithic biome.

Endolithic systems are still at an early stage of exploration. In some cases its biota can support simple invertebrates, most organisms are unicellular. Near-surface layers of rock may contain blue-green algae but most energy comes from chemical synthesis of minerals. The limited supply of energy limits the rates of growth and reproduction. In deeper rock layers microbes are exposed to high pressures and temperatures.[41]

Endolithic fungi and algae in marine ecosystems

Only limited research has been done concerning the distribution of marine endolithic fungi and its diversity even though there is a probability that endolithic fungi could perhaps play an important role in the health of coral reefs.

Endolithic fungi have been discovered in shells as early as the year 1889 by Edouard Bornet and Charles Flahault. These two French phycologists specifically provided descriptions for two fungi: Ostracoblabe implexis and Lithopythium gangliiforme. Discovery of endolithic fungi, such as Dodgella priscus and Conchyliastrum, has also been made in the beach sand of Australia by George Zembrowski. Findings have also been made in coral reefs and have been found to be, at times, beneficial to their coral hosts.[42]

In the wake of worldwide coral bleaching, studies have suggested that the endolithic algae located in the skeleton of the coral may be aiding the survival of coral species by providing an alternative source of energy. Although the role that endolithic fungi play is important in coral reefs, it is often overlooked because much research is focused on the effects of coral bleaching as well as the relationships between Coelenterate and endosymbiotic Symbiodinia.[43]

According to a study done by Astrid Gunther endoliths were also found in the island of Cozumel (Mexico). The endoliths found there not only included algae and fungi but also included cyanobacteria, sponges as well as many other microborers.[44]

Endolithic parasitism

Until the 1990s phototrophic endoliths were thought of as somewhat benign, but evidence has since surfaced that phototrophic endoliths (primarily cyanobacteria) have infested 50 to 80% of midshore populations of the mussel species Perna perna located in South Africa. The infestation of phototrophic endoliths resulted in lethal and sub-lethal effects such as the decrease in strength of the mussel shells. Although the rate of thickening of the shells were faster in more infested areas it is not rapid enough to combat the degradation of the mussel shells.[45]

Endolithic fungi found in the eggs of Cretaceous dinosaurs

Evidence of endolithic fungi were discovered within dinosaur eggshell found in central China. They were characterized as being “needle-like, ribbon-like, and silk-like.".[46]

Fungus is seldom fossilized and even when it is preserved it can be difficult to distinguish endolithic hyphae from endolithic cyanobacteria and algae. Endolithic microbes can, however, be distinguished based on their distribution, ecology, and morphology. According to a 2008 study, the endolithic fungi that formed on the eggshells would have resulted in the abnormal incubation of the eggs and may have killed the embryos in infected eggs of these dinosaurs. It may also have led to the preservation of dinosaur eggs, including some that contained embryos.[46]

Relationship with astrobiology

Endolithic microorganisms have been considered a model for the search for life on other planets by inquiring about what sort of microorganisms on Earth inhabit specific minerals, which helps to propose those lithologies as life detection targets on an extra-terrestrial surface such as Mars. Several studies have been carried out in extreme places that serve as analogs for Mars's surface and subsurface, and many studies in geomicrobiology on Earth's hot and cold deserts have been developed.[47] In these extreme environments, microorganisms find protection against thermal buffering, UV radiation, and desiccation while living inside pores and fissures of minerals and rocks.[17][7] Life in these endolithic habitats might face similar stress due to the scarcity of water and high UV radiation that rule on modern Mars.[34]

An excellent example of these adaptations is the non-hygroscopic but microporous translucent gypsum crusts, which are found as potential substrates that can mitigate exposure to UV radiation and desiccation and allow microbial colonization in hyper-arid deserts.[48][49] In the same way, the ability to grow under high water stress and oligotrophic conditions confer to endolithic microorganisms to survive in conditions similar to those found on Mars. There is evidence of the past existence of water on the red planet; perhaps, these microorganisms could develop adaptations found in current deserts on the Earth. Furthermore, The endolithic structures are a good way to find ancient or current biological activity (biosignatures) on Mars or other rocky planets.

See also

References

  1. ^ Omelon, CR (2016). "Endolithic Microorganisms and Their Habitats". In Hurst, C.J. (ed.). Advances in environmental microbiology. Their World: A Diversity of Microbial Environments. Cincinnati, USA: Springer.
  2. ^ Cockell, C. S.; Olsson, K.; Knowles, F.; Kelly, L.; Herrera, A.; Thorsteinsson, T.; Marteinsson, V. (2009). "Bacteria in weathered basaltic glass, Iceland. Bacteria in weathered basaltic glass, Iceland". Geomicrobiology Journal. 26 (7): 491–507. doi:10.1080/01490450903061101. S2CID 131694781.
  3. ^ Herrera, A.; Cockell, C. S.; Self, S.; Blaxter, M.; Reitner, J.; Thorsteinsson, T.; Tindle, A. G. (2009). "A cryptoendolithic community in volcanic glass". Astrobiology. 9 (4): 369–381. Bibcode:2009AsBio...9..369H. doi:10.1089/ast.2008.0278. PMID 19519213.
  4. ^ Kelly, L. C.; Cockell, C. S.; Herrera-Belaroussi, A.; Piceno, Y.; Andersen, G.; DeSantis, T.; LeRoux, X. (2011). "Bacterial diversity of terrestrial crystalline volcanic rocks, Iceland". Microbial Ecology. 62 (1): 69–79. doi:10.1007/s00248-011-9864-1. PMID 21584756. S2CID 23356098.
  5. ^ Omelon, C. R.; Pollard, W. H.; Ferris, F. G. (2007). "Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats". Microbial Ecology. 54 (4): 740–752. doi:10.1007/s00248-007-9235-0. PMID 17457639. S2CID 19843927.
  6. ^ Walker, J. J.; Pace, N. R. (2007). "Endolithic microbial ecosystems". Annu Rev Microbiol. 61: 331–347. doi:10.1146/annurev.micro.61.080706.093302. PMID 17506683.
  7. ^ a b Wierzchos, J.; Camara, B.; De Los Rios, A.; Davila, A. F.; Sanchaz Almazo, M.; Artieda, O.; Wierzchos, K.; Gomez-Silva, B.; McKay, C.; Ascaso, C. (2011). "Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: Implications for the search for life on Mars". Geobiology. 9 (1): 44–60. doi:10.1111/j.1472-4669.2010.00254.x. PMID 20726901. S2CID 9458330.
  8. ^ Chang, Kenneth (12 September 2016). "Visions of Life on Mars in Earth's Depths". The New York Times. Retrieved 12 September 2016.
  9. ^ Golubic, Stjepko; Friedmann, E. Imre; Schneider, Jürgen (June 1981). "The lithobiotic ecological niche, with special reference to microorganisms". SEPM Journal of Sedimentary Research. 51 (2): 475–478. doi:10.1306/212F7CB6-2B24-11D7-8648000102C1865D. Archived from the original on 30 December 2010.
  10. ^ Ascaso, C (2002). "Ecología microbiana de sustratos líticos". Ciencia y Medio Ambiente: 90–103. hdl:10261/111133. ISBN 9788469979723.
  11. ^ Bungartz, F; Garvie, L. A.; Nash, T. H. (2004). "Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization". The Lichenologist. 36 (1): 55–73. doi:10.1017/S0024282904013854. S2CID 86211017.
  12. ^ Dong, H; Rech, J. A.; Jiang, H; Sun, H; Buck, B. J. (2007). "Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts". Journal of Geophysical Research: Biogeosciences. 112 (G2): G2. Bibcode:2007JGRG..112.2030D. doi:10.1029/2006JG000385.
  13. ^ Lacap, D. C.; Warren-Rhodes, K. A.; McKay, C. P.; Pointing, S. B. (2011). "Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile". Extremophiles. 15 (1): 31–38. doi:10.1007/s00792-010-0334-3. PMC 3017302. PMID 21069402.
  14. ^ Schlesinger, W. H; Pippen, J. S.; Wallenstein, M. D.; Hofmockel, K. S.; Klepeis, D. M.; Mahall, B. E. (2003). "Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert". Ecology. 84 (12): 3222–3231. doi:10.1890/02-0549.
  15. ^ Stomeo, F; Valverde, A; Pointing, S. B.; McKay, C. P.; Warren-Rhodes, K. A.; Tuffin, M. I.; Cowan, D. A. (2013). "Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert". Extremophiles. 17 (2): 329–337. doi:10.1007/s00792-013-0519-7. hdl:10566/3555. PMID 23397517. S2CID 11175962.
  16. ^ Vítek, P.; Ascaso, C; Artieda, O; Wierzchos, J (2016). "Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert". Analytical and Bioanalytical Chemistry. 408 (15): 4083–4092. doi:10.1007/s00216-016-9497-9. PMID 27055886. S2CID 8132118.
  17. ^ a b Bell, R. A. (1993). "Cryptoendolithic algae of hot semiarid lands and deserts". Journal of Phycology. 29 (2): 133–139. doi:10.1111/j.0022-3646.1993.00133.x. S2CID 85033484.
  18. ^ Ascaso, C (2002). "Ecología microbiana de sustratos líticos". Ciencia y Medio Ambiente: 90–103. hdl:10261/111133. ISBN 9788469979723.
  19. ^ Cockell, C. S.; Stokes, M. D. (2004). "Widespread colonization by polar hypoliths". Nature. 431 (7007): 414. doi:10.1038/431414a. PMID 15386002.
  20. ^ Cowan, D. A.; Khan, N.; Pointing, S. B.; Cary, S. C. (2010). "Diverse hypolithic refuge communities in the McMurdo Dry Valleys". Antarctic Science. 22 (6): 714–720. Bibcode:2010AntSc..22..714C. doi:10.1017/S0954102010000507. hdl:10289/5090. S2CID 53558610.
  21. ^ Friedmann, E. I. (1980). "Endolithic Microbial Life in Hot and Cold Deserts". Limits of Life. Vol. 10. pp. 223–235. doi:10.1007/978-94-009-9085-2_3. ISBN 978-94-009-9087-6. PMID 6774304. {{cite book}}: |journal= ignored (help)
  22. ^ Smith, M. C.; Bowman, J. P.; Scott, F. J.; Line, M. A. (2000). "Sublithic bacteria associated with Antarctic quartz stones". Antarctic Science. 12 (2): 177–184. Bibcode:2000AntSc..12..177S. doi:10.1017/S0954102000000237. S2CID 84337509.
  23. ^ Omelon, C. R.; Pollard, W. H.; Ferris, F. G. (2006). "Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats". Polar Biology. 30 (1): 19–29. doi:10.1007/s00300-006-0155-0. S2CID 22633158.
  24. ^ Makhalanyane, T. P.; Pointing, S. B.; Cowan, D. A. (2014). "Lithobionts: Cryptic and Refuge Niches". Antarctic Terrestrial Microbiology. pp. 163–179. doi:10.1007/978-3-642-45213-0_9. ISBN 978-3-642-45212-3.
  25. ^ Friedmann, E. I.; Weed, R. (1987). "Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert". Science. 236 (4802): 703–705. doi:10.1126/science.11536571. PMID 11536571.
  26. ^ Inagaki, F.; Takai, K.; Komatsu, T.; Sakihama, Y.; Inoue, A.; Horikoshi, K. (2015). "Profile of microbial community structure and presence of endolithic microorganisms inside a deep-sea rock". Geomicrobiology Journal. 19 (6): 535–552. doi:10.1080/01490450290098577. S2CID 84636295.
  27. ^ Gaylarde, C.; Baptista-Neto, J. A.; Ogawa, A.; Kowalski, M.; Celikkol-Aydin, S.; Beech, I. (2017). "Epilithic and endolithic microorganisms and deterioration on stone church facades subject to urban pollution in a sub-tropical climate". Biofouling. 33 (2): 113–127. doi:10.1080/08927014.2016.1269893. PMID 28054493. S2CID 3295932.
  28. ^ Schultz, Steven (13 December 1999). "Two miles underground". Princeton Weekly Bulletin. Archived from the original on 13 January 2016. — Gold mines present "ideal environment" for geologists studying subsurface microbes
  29. ^ a b Hively, Will (May 1997). "Looking for life in all the wrong places — research on cryptoendoliths". Discover. Retrieved 5 December 2019.
  30. ^ de la Torre, J. R.; Goebel, B. M.; Friedmann, E. I.; Pace, N. R. (2003). "Microbial Diversity of Cryptoendolithic Communities from the Mc Murdo Dry Valleys, Antarctica". Applied and Environmental Microbiology. 69 (7): 3858–3867. Bibcode:2003ApEnM..69.3858D. doi:10.1128/AEM.69.7.3858-3867.2003. PMC 165166. PMID 12839754.
  31. ^ Horath, Thomas; Bachofen, Reinhard (August 2009). "Molecular Characterization of an Endolithic Microbial Community in Dolomite Rock in the Central Alps (Switzerland)" (PDF). Microbial Ecology. 58 (2): 290–306. doi:10.1007/s00248-008-9483-7. PMID 19172216. S2CID 845383.
  32. ^ Walker, Jeffrey J.; Spear, John R.; Pace, Norman R. (2005). "Geobiology of a microbial endolithic community in the Yellowstone geothermal environment". Nature. 434 (7036): 1011–1014. Bibcode:2005Natur.434.1011W. doi:10.1038/nature03447. PMID 15846344. S2CID 4408407.
  33. ^ Walker, J. J.; Pace, N. R. (2007). "Phylogenetic Composition of Rocky Mountain Endolithic Microbial Ecosystems". Applied and Environmental Microbiology. 73 (11): 3497–3504. Bibcode:2007ApEnM..73.3497W. doi:10.1128/AEM.02656-06. PMC 1932665. PMID 17416689.
  34. ^ a b c Meslier, V; DiRuggiero, J (2019). "7 Endolithic microbial communities as model systems for ecology and astrobiology". In Seckbach, J.; Rampelotto, P.H. (eds.). Model Ecosystems in Extreme Environments. Academic press. ISBN 978-0-1281-2742-1.
  35. ^ Mullen, Leslie. "Glass Munchers Under the Sea". NASA Astrobiology Institute. Archived from the original on 20 February 2013.
  36. ^ Lysnes, Kristine; Torsvik, Terje; Thorseth, Ingunn H.; Pedersen, Rolf B. (2004). "Microbial Populations in Ocean Floor Basalt: Results from ODP Leg 187" (PDF). Proc ODP Sci Results. Proceedings of the Ocean Drilling Program. 187: 1–27. doi:10.2973/odp.proc.sr.187.203.2004.
  37. ^ Wierzchos, Jacek; Ascaso, Carmen; McKay, Christopher P. (2006). "Endolithic Cyanobacteria in Halite Rocks from the Hyperarid Core of the Atacama Desert". Astrobiology. 6 (3): 415–422. Bibcode:2006AsBio...6..415W. doi:10.1089/ast.2006.6.415. hdl:10261/19099. PMID 16805697.
  38. ^ Osterrothová, K; Culka, A; Němečková, K; Kaftan, D; Nedbalová, L; Procházková, L; Jehlička, J (2019). "Analyzing carotenoids of snow algae by Raman microspectroscopy and high-performance liquid chromatography". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 212: 262–271. Bibcode:2019AcSpA.212..262O. doi:10.1016/j.saa.2019.01.013. PMID 30658280. S2CID 58604046.
  39. ^ Yirka, Bob (29 August 2013). "Soil beneath ocean found to harbor long-lived bacteria, fungi and viruses". Phys.org. Archived from the original on 29 October 2015.
  40. ^ "Frequently Requested Information about the SLiME Hypothesis". Archived from the original on 30 September 2006.
  41. ^ Keith, DA; Iliffe, TM; Gerovasileiou, V; Gonzalez, B; Brankovits, D; Martínez García, A (2020). "S1.2 Endolithic systems". In Keith, D.A.; Ferrer-Paris, J.R.; Nicholson, E.; Kingsford, R.T. (eds.). The IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups. Gland, Switzerland: IUCN. doi:10.2305/IUCN.CH.2020.13.en. ISBN 978-2-8317-2077-7. S2CID 241360441.
  42. ^ Golubic, Stjepko; Radtke, Gudrun; Campion-Alsumard, Therese Le (2005). "Endolithic fungi in marine ecosystems". Trends in Microbiology. 13 (5): 229–235. doi:10.1016/j.tim.2005.03.007. PMID 15866040.
  43. ^ Fine, Maoz; Loya, Yossi (2002). "Endolithic algae: an alternative source of photoassimilates during coral bleaching". Proceedings of the Royal Society of London. Series B: Biological Sciences. 269 (1497): 1205–1210. doi:10.1098/rspb.2002.1983. PMC 1691023. PMID 12065035.
  44. ^ Günther, Astrid (1990). "Distribution and bathymetric zonation of shell-boring endoliths in recent reef and shelf environments: Cozumel, Yucatan (Mexico)". Facies. 22 (1): 233–261. doi:10.1007/bf02536953. S2CID 130403994.
  45. ^ Kaehler, S.; McQuaid, C. D. (1999). "Lethal and sub-lethal effects of phototrophic endoliths attacking the shell of the intertidal mussel Perna perna". Marine Biology. 135 (3): 497–503. doi:10.1007/s002270050650. S2CID 84103549.
  46. ^ a b Gong, YiMing; Xu, Ran; Hu, Bi (2008). "Endolithic fungi: A possible killer for the mass extinction of Cretaceous dinosaurs". Science in China Series D: Earth Sciences. 51 (6): 801–807. Bibcode:2008ScChD..51..801G. doi:10.1007/s11430-008-0052-1. S2CID 126670640.
  47. ^ Warren-Rhodes, K. A.; Rhodes, K. L.; Pointing, S. B.; Ewing, S. A.; Lacap, D. C.; Gomez-Silva, B.; McKay, C. P. (2006). "Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert". Microbial Ecology. 52 (3): 389–398. doi:10.1007/s00248-006-9055-7. PMID 16865610. S2CID 1914122.
  48. ^ Cockell, C.; Osinski, G.; Lee, P. (2003). "The impact crater as a habitat: effects of impact processing of target materials". Astrobiology. 3 (1): 3181–191. Bibcode:2003AsBio...3..181C. doi:10.1089/153110703321632507. PMID 12804371.
  49. ^ Oren, A.; Kühl, M.; Karsten, U. (1995). "An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration". Marine Ecology Progress Series. 128: 151–159. Bibcode:1995MEPS..128..151O. doi:10.3354/meps128151.

Notes

  • Endoliths General Collection — This collection of online resources such as news articles, web sites, and reference pages provides a comprehensive array of information about endoliths.
  • Endolith Advanced Collection — Compiled for professionals and advanced learners, this endolith collection includes online resources such as journal articles, academic reviews, and surveys.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2012. Sebuah batu bulat di halaman Museum Nasional Kosta Rika. Batu bulat (atau bola batu) dari Kosta Rika adalah sekelompok batu berbentuk bulat yang berjumlah lebih dari tiga ratus di Kosta Rika, ditemukan di delta Diquis, Isla del Caño. Penduduk setempat meny…

Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация  Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Основ…

Medical conditionFuchs heterochromic iridocyclitisSpecialtyOphthalmology  Fuchs heterochromic iridocyclitis (FHI) is a chronic unilateral uveitis appearing with the triad of heterochromia, predisposition to cataract and glaucoma, and keratitic precipitates on the posterior corneal surface. Patients are often asymptomatic and the disease is often discovered through investigation of the cause of the heterochromia or cataract. Neovascularisation (growth of new abnormal vessels) is possible and…

English footballer (1919-1973) Harry Johnston Personal informationFull name Henry JohnstonDate of birth (1919-09-26)26 September 1919Place of birth Manchester, EnglandDate of death 12 October 1973(1973-10-12) (aged 54)Place of death Manchester, EnglandPosition(s) DefenderYouth career193?–1934 DroylsdenSenior career*Years Team Apps (Gls)1934–1955 Blackpool 386 (11)International career1946–1953 England 10 (0)Managerial career1955–1962 Reading1969 Blackpool (caretaker) *Club domestic l…

Geographic and cultural region of Tennessee, United States Grand Division in Tennessee, United StatesWest TennesseeGrand Division Clockwise, from top left: The Memphis Pyramid, Graceland, Beale Street, Pinson Mounds, Shiloh National Military Park, Reelfoot LakeNickname(s): West TN, West Tenn.The counties of Tennessee highlighted in red that are designated part of West Tennessee.Country United StatesState TennesseeLargest cityMemphisArea • Land27,600 km2 (10,650…

1774 American trade boycott with England Continental AssociationThe First Continental Congress, meeting in Philadelphia, published and signed the Continental Association on October 20, 1774; Thomas Jefferson, who was not yet a delegate to the Congress, signed this copy (on lower left)CreatedOctober 20, 1774Date effectiveDecember 1, 1774SignatoriesEdward Rutledge, George Ross, Caesar Rodney, Thomas McKean, George Read, Matthew Tilghman, Thomas Johnson, William Paca, John Morton, Samuel Chase…

Citrus fruit and plant Ichang papeda Papeda or papaeda is the common name for a group of Citrus species and varieties native to tropical Asia that are hardy and slow-growing, and produce unpalatable fruit. Walter Tennyson Swingle segregated these species into a separate subgenus, Papeda, that included the Ichang lemon, yuzu, kaffir lime, kabosu, sudachi, and a number of wild and uncultivated species and hybrids. Recent genetic analysis shows the papedas to be distributed among distinct branches …

  提示:此条目页的主题不是萧。 簫琴簫與洞簫木管樂器樂器別名豎吹、豎篴、通洞分類管樂器相關樂器 尺八 东汉时期的陶制箫奏者人像,出土於彭山江口汉崖墓,藏於南京博物院 箫又稱洞簫、簫管,是中國古老的吹管樂器,特徵為單管、豎吹、開管、邊稜音發聲[1]。「簫」字在唐代以前本指排簫,唐宋以來,由於單管豎吹的簫日漸流行,便稱編管簫爲排簫,…

Nasi instan kering yang dijual di Korea Nasi instan basah Korea Nasi instan adalah nasi yang sebelumnya telah mengalami proses pemasakan. Beberapa jenis nasi instan disiapkan untuk dimasak secara instan menggunakan microwave, ada juga nasi instan yang dikeringkan sehingga lebih cepat matang. Beras biasa membutuhkan waktu 18–30 menit untuk dimasak sementara nasi instan membutuhkan 1–7 menit. Karena sudah matang, yang diperlukan untuk menyiapkan nasi instan cukup dengan microwave atau dibasahi…

American television network This article is about the American television network. For television reception via antenna, see terrestrial television. For the Greek television network, see ANT1. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of th…

Military conflict This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cortina Troubles – news · newspapers · books · scholar · JSTOR (December 2007) (Learn how and when to remove this message) Cortina TroublesDateFirst Cortina War: July 13, 1859 – March 17, 1860(9 months and 4 days)Second Cortina War: M…

Chemical compound DesmethylchlorotrianiseneClinical dataOther namesDMCTADrug classNonsteroidal estrogenIdentifiers IUPAC name (EZ)-4-[2-Chloro-1,2-bis(4-hydroxyphenyl)ethenyl]phenol PubChem CID53325692ChemSpider25047392ChEMBLChEMBL1201399Chemical and physical dataFormulaC20H15ClO3Molar mass338.79 g·mol−13D model (JSmol)Interactive image SMILES OC1=CC=C(/C(C2=CC=C(OC)C=C2)=C(Cl)/C3=CC=C(OC)C=C3)C=C1 InChI InChI=1S/C20H15ClO3/c21-20(15-5-11-18(24)12-6-15)19(13-1-7-16(22)8-2-13)14-3-9-17(23…

巴西工党Partido Trabalhista Brasileiro巴西工党标志领袖罗伯托·杰斐逊成立1981年11月3日解散2023年11月9日併入民主復興黨(英语:Democratic Renewal Party (Brazil))总部SAS, Qd. 1, Bloco M, Ed. Libertas, Loja 101Brasilia, Brazil党员(2021年11月)1,075,750意識形態現在:社会保守主义民族保守主义经济自由主义巴西民族主义右翼民粹主义瓦加斯主义军国主义反共主义歷史上:自由保守主義第三條道路工人…

Process of making a motion picture Filmmaker redirects here. For other uses, see Filmmaker (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Filmmaking – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this message) Part of a series onFilmmaking Development…

Orang kulit hitam yang terkenalAtas: W.E.B. Du Bois, MLK dan Nelson MandelaBawah: Wangari Maathai, Rosa Parks, Sojourner Truth Seorang wanita Kongo Orang kulit hitam adalah sebuah istilah yang digunakan di negara-negara tertentu, sering kali secara sosial berdasarkan pada sistem klasifikasi rasial atau etnisitas, untuk menyebut orang yang berkulit hitam dibandingkan dengan penduduk lainnya. Karena itu, pengatiannya banyak ragamnya di dalam maupun antar masyarakat, dan tergantung pada konteks. Ba…

2009 single by Mami KawadamasterpieceSingle by Mami Kawadafrom the album Linkage B-sidejellyfishReleasedFebruary 4, 2009GenreJ-PopLength18:04LabelGeneonSongwriter(s)Mami KawadaProducer(s)I've SoundMami Kawada singles chronology PSI-Missing (2008) masterpiece (2009) L'Oiseau bleu (2009) masterpiece is the seventh single released by the J-pop singer, Mami Kawada, and was released on February 4, 2009. The title track was used as the second opening theme for the anime series A Certain Magical Index …

ملعب ساوساليتومعلومات عامةالمنطقة الإدارية فينيا ديل مار البلد  تشيلي التشييد والافتتاحالمقاول الرئيسي إيفرتون دي فينا ديل مار الاستعمالالرياضة كرة القدم المستضيف إيفرتون دي فينا ديل مارالمالك ميونكيبيو دي فينيا ديل مارالإدارة إيفرتون دي فينا ديل مار أحداث مهمة كأس ا…

Finocchiona IGPOriginiLuogo d'origine Italia RegioneToscana Zona di produzioneTutta la regione (escluse isole) DettagliCategoriasalume RiconoscimentoI.G.P. SettoreCarni (e frattaglie) fresche e loro preparazione La finocchiona è un insaccato tipico toscano preparato con carne di maiale macinata, aromatizzata con semi di finocchio e bagnata con vino rosso. Dall'aprile 2015 è riconosciuta come prodotto IGP.[1] Indice 1 Storia 2 Preparazione 3 Note 4 Bibliografia 5 Altri progetti 6 C…

Case medical center redirects here. For the Ugandan hospital, see Case Medical Centre. Hospital in Ohio, United StatesUniversity HospitalsCleveland Medical CenterFront view of Lerner TowerGeographyLocation11100 Euclid Avenue, Cleveland, Ohio, United StatesOrganizationCare systemPrivateFundingNon-profit hospitalTypeTeachingAffiliated universityCase Western Reserve University School of MedicineNortheast Ohio Medical UniversityServicesEmergency departmentLevel I trauma centerBeds1,032[1]Spe…

SetebosGambar penemuan Setebos (dilingkari)PenemuanDitemukan oleh John J. Kavelaars Brett J. Gladman Matthew J. Holman Jean-Marc Petit Hans Scholl Tanggal penemuan18 Juli 1999PenamaanPenamaanUranus XIXPelafalan/ˈsɛtɛbʌs/,[1] /-bɒs/[2]Kata sifat bahasa InggrisSetebosian /ˌsɛtɛˈbʌsiən/[3]Ciri-ciri orbitJari-jari orbit rata-rata17,418,000 km[4][5]Eksentrisitas0.5914[5]Periode orbit2225.21 dInklinasi158° (terhadap eklipt…