Elizabeth Ann Winzeler is an American microbiologist and geneticist. She is a professor in the Division of Host-Microbe Systems and Therapeutics of the School of Medicine at the University of California at San Diego.[1] Although she works in a variety of different disease areas, most research focuses on developing better medicines for the treatment and eradication of malaria.
In 1999, Winzeler was recruited by Peter G. Schultz to the newly established Genomics Institute of the Novartis Research Foundation. In 2000, she obtained a secondary position as an assistant professor in the Department of Cell Biology at Scripps Research. In 2012, she moved to the University of California, San Diego where she is currently a professor in the Department of Pediatrics and director of Translational Research at the UCSD Health Sciences Center for Immunity, Infection, and Inflammation.[2] She is a member of the Division of Host Microbe Systems and Therapeutics and the Institute for Genomic Medicine.
Research
While she was still at Stanford University, she began working at the interface of genetics and informatics in the new field of functional genomics.[5] After establishing her own lab, she began applying the powerful, high throughput methods that worked well in yeast to organisms that were both more medically relevant and experimentally-challenging, namely the protozoan Plasmodium parasites that cause human malaria. She showed that malaria parasites produce coordinated sets of gene messages as they progress through their complex lifecycle[6] and developed methods for studying parasite genetic variation and genome evolution especially in relationship to the emergence of drug resistance.[2][7][8] She is also known for developing phenotypic screening methods[9] as well as contributions to drug development and Open Source Drug Discovery.[10][11] Her group has developed screening methods that have led to the discovery of several new antimalarial chemotypes, two of which have been developed into clinical candidates. These include Ganaplacide (KAF156)[12] and Cipargamin (KAE609).[13][14] In addition, her lab discovered the targets of a variety of antimalarial compounds, including PfATP4,[14] and Pf1-phosphatidylinositol 4-kinase.[15] In 2017 she became director of the Bill and Melinda Gates Foundation Malaria Drug Accelerator (MALDA),[16] an international consortium that seeks to develop better treatments for malaria. She is a member of the governing board of the Tres Cantos Open Lab Foundation.
^Tom Vasich, Scott LaFee, Niall Kavanagh (April 28, 2017). Tackling malaria worldwide. The Regents of the University of California. Accessed October 2018.
^ abcdefgValo, Ellisa (January 24, 2017). "Ending Malaria". Lewis and Clark College. Retrieved October 27, 2018.
^"Behind the Scenes". New Scientist. August 14, 1999. Retrieved October 27, 2018.
^ abWinzeler, EA; Shoemaker, DD; Astromoff, A; Liang, H; Anderson, K; Andre, B; Bangham, R; Benito, R; Boeke, JD; Bussey, H; Chu, AM; Connelly, C; Davis, K; Dietrich, F; Dow, SW; El Bakkoury, M; Foury, F; Friend, SH; Gentalen, E; Giaever, G; Hegemann, JH; Jones, T; Laub, M; Liao, H; Liebundguth, N; Lockhart, DJ; Lucau-Danila, A; Lussier, M; M'Rabet, N; Menard, P; Mittmann, M; Pai, C; Rebischung, C; Revuelta, JL; Riles, L; Roberts, CJ; Ross-MacDonald, P; Scherens, B; Snyder, M; Sookhai-Mahadeo, S; Storms, RK; Véronneau, S; Voet, M; Volckaert, G; Ward, TR; Wysocki, R; Yen, GS; Yu, K; Zimmermann, K; Philippsen, P; Johnston, M; Davis, RW (6 August 1999). "Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis". Science. 285 (5429): 901–6. doi:10.1126/science.285.5429.901. PMID10436161.
^Le Roch, K. G; Zhou, Y; Blair, P. L; Grainger, M; Moch, J. K; Haynes, J. D; de la Vega, P; Holder, A. A; Batalov, S; Carucci, D. J; Winzeler, E. A (2003). "Discovery of gene function by expression profiling of the malaria parasite life cycle". Science. 301(5639): 1503–8. Bibcode:2003Sci...301.1503L. doi:10.1126/science.1087025. PMID12893887.
^Zhou, Y; Ramachandran, V; Kumar, K. A; Westenberger, S; Refour, P; Zhou, B; Li, F; Young, J. A; Chen, K; Plouffe, D; Henson, K; Nussenzweig, V; Carlton, J; Vinetz, J. M; Duraisingh, M. T; Winzeler, E. A (2008). "Evidence-based annotation of the malaria parasite's genome using comparative expression profiling". Public Library Of Science ONE. 3(2): e1570. Bibcode:2008PLoSO...3.1570Z. doi:10.1371/journal.pone.0001570. PMC2215772. PMID18270564.
^Young, J. A; Fivelman, Q. L; Blair, P. L; de la Vega, P; Le Roch, K. G; Zhou, Y; Carucci, D. J; Baker, D. A; Winzeler, E. A (2005). "The Plasmodium falciparum sexual development transcriptome: A microarray analysis using ontology-based pattern identification" (PDF). Molecular and Biochemical Parasitology. 143(1): 67–79. doi:10.1016/j.molbiopara.2005.05.007. PMID16005087.
^Plouffe, D. M; Wree, M; Du, A. Y; Meister, S; Li, F; Patra, K; Lubar, A; Okitsu, S. L; Flannery, E. L; Kato, N; Tanaseichuk, O; Comer, E; Zhou, B; Kuhen, K; Zhou, Y; Leroy, D; Schreiber, S. L; Scherer, C. A; Vinetz, J; Winzeler, E. A (2016). "High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission". Cell Host & Microbe. 19(1): 114–26. doi:10.1016/j.chom.2015.12.001. PMC4723716. PMID26749441.
^Antonova-Koch, Y; Meister, S; Abraham, M; Luth, MR; Ottilie, S; Lukens, AK; Sakata-Kato, T; Vanaerschot, M; Owen, E; Jado, JC; Maher, SP; Calla, J; Plouffe, D; Zhong, Y; Chen, K; Chaumeau, V; Conway, AJ; McNamara, CW; Ibanez, M; Gagaring, K; Serrano, FN; Eribez, K; Taggard, CM; Cheung, AL; Lincoln, C; Ambachew, B; Rouillier, M; Siegel, D; Nosten, F; Kyle, DE; Gamo, FJ; Zhou, Y; Llinás, M; Fidock, DA; Wirth, DF; Burrows, J; Campo, B; Winzeler, EA (7 December 2018). "Open-source discovery of chemical leads for next-generation chemoprotective antimalarials". Science. 362 (6419): eaat9446. Bibcode:2018Sci...362.9446A. doi:10.1126/science.aat9446. PMC6516198. PMID30523084.
^Kuhen, K. L; Chatterjee, A. K; Rottmann, M; Gagaring, K; Borboa, R; Buenviaje, J; Chen, Z; Francek, C; Wu, T; Nagle, A; Barnes, S. W; Plouffe, D; Lee, M. C; Fidock, D. A; Graumans, W; Van De Vegte-Bolmer, M; Van Gemert, G. J; Wirjanata, G; Sebayang, B; Marfurt, J; Russell, B; Suwanarusk, R; Price, R. N; Nosten, F; Tungtaeng, A; Gettayacamin, M; Sattabongkot, J; Taylor, J; Walker, J. R; et al. (2014). "KAF156 is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission". Antimicrobial Agents and Chemotherapy. 58(9): 5060–5067. doi:10.1128/AAC.02727-13. PMC4135840. PMID24913172.