Family of hypergeometric orthogonal polynomials
In mathematics, the dual q -Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme . Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010 , 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions .
R
n
(
q
−
x
+
γ
δ
q
x
+
1
,
γ
,
δ
,
N
|
q
)
=
3
ϕ
2
[
q
−
n
,
q
−
x
,
γ
δ
q
x
+
1
γ
q
,
q
−
N
;
q
,
q
]
,
n
=
0
,
1
,
2
,
.
.
.
,
N
{\displaystyle R_{n}(q^{-x}+\gamma \delta q^{x+1},\gamma ,\delta ,N|q)={}_{3}\phi _{2}\left[{\begin{matrix}q^{-n},q^{-x},\gamma \delta q^{x+1}\\\gamma q,q^{-N}\end{matrix}};q,q\right],\quad n=0,1,2,...,N}
References
Gasper, George ; Rahman, Mizan (2004), Basic hypergeometric series , Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press , ISBN 978-0-521-83357-8 , MR 2128719
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues , Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , doi :10.1007/978-3-642-05014-5 , ISBN 978-3-642-05013-8 , MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18 Orthogonal Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Costas-Santos, R.S.; Sánchez-Lara, J.F. (September 2011). "Orthogonality of q -polynomials for non-standard parameters". Journal of Approximation Theory . 163 (9): 1246– 1268. arXiv :1002.4657 . doi :10.1016/j.jat.2011.04.005 . S2CID 115178147 .
Sadjang, Patrick Njionou. Moments of Classical Orthogonal Polynomials (Ph.D.). Universität Kassel. CiteSeerX 10.1.1.643.3896 .