After graduating in physics in 1967 from the École polytechnique, Dominique Franck Escande became a graduate student in physics at Paris-Sud University. There he graduated in 1971 with a diplôme d'études approfondies [fr] (DEA) and a Ph.D. in 1978.[1] His Ph.D. thesis in entitled Ondes haute fréquence dans un plasma en présence de fluctuation de basse fréquence (High-frequency waves in a plasma in the presence of low-frequency fluctuation).[3] From 1981 to 1992 he was a CNRS researcher at the École polytechnique, where he held an appointment as maître de conferences (assistant professor) in physics. During the years of his appointment at the École polytechnique, he also worked at several other scientific institutions. For the academic year 1983–1984 he was on sabbatical at the University of Texas at Austin's Institute for Fusion Studies (IFS)[1] (which, among other things, is the principal site for USA-Japan collaboration on theory in fusion research).[4] From 1987 to 1992 he was a part-time consultant for X-Recherche Service.[1] In 1988 for the CNRS research unit Laboratoire J.-L. Lagrange, [5] he created, in collaboration with Fabrice Doveil of the research team Equipe Turbulence Fluide et Plasma,[1][6] the institute Physique des Interactions Ioniques et Moléculaires (PIIM).[7] From 1988 to 1992 Escande also held an appointment as CNRS researcher at the University of Provence.[1]
Escande was from 1992 to 1996 the head of the Département de Recherches sur la Fusion Contrôlée at EA-Cadarache, as well as the head of the Tore Supra French tokamak group. From 1995 to 1996 he chaired the Euratom Fusion Technology Steering Committee-Implementation. At Consorzio RFX [it] (Consortium RFX) in Padua, Italy, he was from 1996 to 1998 a full-time advisor and is since 1998 a part-time advisor. In 1998 he became a CNRS researcher at the University of Provence, where he now has emeritus status as Directeur de Recherché Emirate.[1]
He contributed three book chapters.[1][8][9][10] He is the co-author with Yves Elskens (a physics professor at the University of Provence) of the book Microscopic dynamics of plasmas and chaos (2003, IOP Publishing); with a 2019 paperback edition published by CRC Press.[11]
Escande is author or co-author of many scientific articles related to the device called the reverse field pinch (RFP)[12][13][14][15][16][17][18][19][20][21][22][23] and is an internationally recognized expert on RFPs.[24] His former doctoral student Didier Bénisti[3] has acquired an international reputation in fusion research and plasma physics.[25]
Escande, D. F.; Doveil, F. (1981). "Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems". Journal of Statistical Physics. 26 (2): 257–284. Bibcode:1981JSP....26..257E. doi:10.1007/BF01013171. S2CID120359199.
Arcis, N.; Escande, D. F.; Ottaviani, M. (2007). "Saturation of a tearing mode in zero-β full magnetohydrodynamics". Physics of Plasmas. 14 (3): 032308. Bibcode:2007PhPl...14c2308A. doi:10.1063/1.2710799.
^Dauxois, T.; Ruffo, S.; Cugliandolo, L.F., eds. (2010). "Chapter 14. Wave–particle interaction in plasmas: a qualitative approach by D. F. Escande". Long-range interacting systems. Lecture Notes of the Les Houches Summer School, vol. 90, August 2008. Oxford University Press.
^Escande, D. F.; Paccagnella, R.; Cappello, S.; Marchetto, C.; d'Angelo, F. (2000). "Chaos Healing by Separatrix Disappearance and Quasisingle Helicity States of the Reversed Field Pinch". Physical Review Letters. 85 (15): 3169–3172. Bibcode:2000PhRvL..85.3169E. doi:10.1103/PhysRevLett.85.3169. PMID11019293.
^Cappello, S.; Bonfiglio, D.; Escande, D. F. (2006). "Magnetohydrodynamic dynamo in reversed field pinch plasmas: Electrostatic drift nature of the dynamo velocity field". Physics of Plasmas. 13 (5): 056102. Bibcode:2006PhPl...13e6102C. doi:10.1063/1.2177198.
^Spizzo, G.; Cappello, S.; Cravotta, A.; Escande, D. F.; Predebon, I.; Marrelli, L.; Martin, P.; White, R. B. (2006). "Transport Barrier inside the Reversal Surface in the Chaotic Regime of the Reversed-Field Pinch". Physical Review Letters. 96 (2): 025001. Bibcode:2006PhRvL..96b5001S. doi:10.1103/PhysRevLett.96.025001. PMID16486588.
^Bonfiglio, D.; Cappello, S.; Escande, D. F. (2006). "Electrostatic dynamo in reversed field pinch plasmas: Simple common fundamental nature of laminar and turbulent regimes". AIP Conference Proceedings. Vol. 871. pp. 3–14. doi:10.1063/1.2404535.
^Cappello, S.; Bonfiglio, D.; Escande, D.F.; Guo, S.C.; Predebon, I.; Sattin, F.; Veranda, M.; Zanca, P.; Angioni, C.; Chacón, L.; Dong, J.Q.; Garbet, X.; Liu, S.F. (2011). "Equilibrium and transport for quasi-helical reversed field pinches". Nuclear Fusion. 51 (10): 103012. Bibcode:2011NucFu..51j3012C. doi:10.1088/0029-5515/51/10/103012. S2CID53118414.
^Gobbin, M.; Bonfiglio, D.; Escande, D. F.; Fassina, A.; Marrelli, L.; Alfier, A.; Martines, E.; Momo, B.; Terranova, D. (2011). "Vanishing Magnetic Shear and Electron Transport Barriers in the RFX-Mod Reversed Field Pinch". Physical Review Letters. 106 (2): 025001. Bibcode:2011PhRvL.106b5001G. doi:10.1103/PhysRevLett.106.025001. PMID21405234.
^"Invited Speakers". 53rd Annual Meeting of the APS Division of Plasma Physics, November 14–18, 2011; Salt Lake City, Utah; American Physical Society. 56 (16).