Doignon's theorem in geometry is an analogue of Helly's theorem for the integer lattice. It states that, if a family of convex sets in -dimensionalEuclidean space have the property that the intersection of every contains an integer point, then the intersection of all of the sets contains an integer point. Therefore, -dimensionalinteger linear programs form an LP-type problem of combinatorial dimension , and can be solved by certain generalizations of linear programming algorithms in an amount of time that is linear in the number of constraints of the problem and fixed-parameter tractable in its dimension.[1] The same theorem applies more generally to any lattice, not just the integer lattice.[2]
The result is tight: there exist systems of half-spaces for which every have an integer point in their intersection, but for which the whole system has no integer intersection. Such a system can be obtained, for instance, by choosing halfspaces that contain all but one vertex of the unit cube. Another way of phrasing the result is that the Helly number of convex subsets of the integers is exactly . More generally, the Helly number of any discrete set of Euclidean points equals the maximum number of points that can be chosen to form the vertices of a convex polytope that contains no other point from the set.[6] Generalizing both Helly's theorem and Doignon's theorem, the Helly number of the Cartesian productis .[7]
References
^ abAmenta, Nina; De Loera, Jesús A.; Soberón, Pablo (2017), "Helly's theorem: new variations and applications", in Harrington, Heather A.; Omar, Mohamed; Wright, Matthew (eds.), Proceedings of the AMS Special Session on Algebraic and Geometric Methods in Applied Discrete Mathematics held in San Antonio, TX, January 11, 2015, Contemporary Mathematics, vol. 685, Providence, Rhode Island: American Mathematical Society, pp. 55–95, arXiv:1508.07606, doi:10.1090/conm/685, ISBN978-1-4704-2321-6, MR3625571
^Ambrus, Gergely; Balko, Martin; Frankl, Nóra; Jung, Attila; Naszódi, Márton (2023), "On Helly numbers of exponential lattices", in Chambers, Erin W.; Gudmundsson, Joachim (eds.), 39th International Symposium on Computational Geometry, SoCG 2023, June 12–15, 2023, Dallas, Texas, USA, LIPIcs, vol. 258, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 8:1–8:16, doi:10.4230/LIPIcs.SoCG.2023.8