Usually, this theorem appears in literature without a name. It is called Froda's theorem in some recent works; in his 1929 dissertation, Alexandru Froda stated that the result was previously well-known and had provided his own elementary proof for the sake of convenience.[1] Prior work on discontinuities had already been discussed in the 1875 memoir of the French mathematician Jean Gaston Darboux.[2]
If and exist and are finite then the difference is called the jump[3] of at
Consider a real-valued function of real variable defined in a neighborhood of a point If is discontinuous at the point then the discontinuity will be a removable discontinuity, or an essential discontinuity, or a jump discontinuity (also called a discontinuity of the first kind).[4]
If the function is continuous at then the jump at is zero. Moreover, if is not continuous at the jump can be zero at if
Precise statement
Let be a real-valued monotone function defined on an interval Then the set of discontinuities of the first kind is at most countable.
One can prove[5][3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind. With this remark the theorem takes the stronger form:
Let be a monotone function defined on an interval Then the set of discontinuities is at most countable.
Proofs
This proof starts by proving the special case where the function's domain is a closed and bounded interval [6][7] The proof of the general case follows from this special case.
Proof when the domain is closed and bounded
Two proofs of this special case are given.
Proof 1
Let be an interval and let be a non-decreasing function (such as an increasing function).
Then for any
Let and let be points inside at which the jump of is greater or equal to :
For any so that
Consequently,
and hence
Since we have that the number of points at which the jump is greater than is finite (possibly even zero).
Define the following sets:
Each set is finite or the empty set. The union
contains all points at which the jump is positive and hence contains all points of discontinuity. Since every is at most countable, their union is also at most countable.
If is non-increasing (or decreasing) then the proof is similar. This completes the proof of the special case where the function's domain is a closed and bounded interval.
Proof 2
For a monotone function , let mean that is monotonically non-decreasing and let mean that is monotonically non-increasing. Let is a monotone function and let denote the set of all points in the domain of at which is discontinuous (which is necessarily a jump discontinuity).
Because has a jump discontinuity at so there exists some rational number that lies strictly in between (specifically, if then pick so that while if then pick so that holds).
It will now be shown that if are distinct, say with then
If then implies so that
If on the other hand then implies so that
Either way,
Thus every is associated with a unique rational number (said differently, the map defined by is injective).
Since is countable, the same must be true of
Proof of general case
Suppose that the domain of (a monotone real-valued function) is equal to a union of countably many closed and bounded intervals; say its domain is (no requirements are placed on these closed and bounded intervals[a]).
It follows from the special case proved above that for every index the restriction of to the interval has at most countably many discontinuities; denote this (countable) set of discontinuities by
If has a discontinuity at a point in its domain then either is equal to an endpoint of one of these intervals (that is, ) or else there exists some index such that in which case must be a point of discontinuity for (that is, ).
Thus the set of all points of at which is discontinuous is a subset of which is a countable set (because it is a union of countably many countable sets) so that its subset must also be countable (because every subset of a countable set is countable).
In particular, because every interval (including open intervals and half open/closed intervals) of real numbers can be written as a countable union of closed and bounded intervals, it follows that any monotone real-valued function defined on an interval has at most countable many discontinuities.
To make this argument more concrete, suppose that the domain of is an interval that is not closed and bounded (and hence by Heine–Borel theorem not compact).
Then the interval can be written as a countable union of closed and bounded intervals with the property that any two consecutive intervals have an endpoint in common:
If then where is a strictly decreasing sequence such that In a similar way if or if
In any interval there are at most countable many points of discontinuity, and since a countable union of at most countable sets is at most countable, it follows that the set of all discontinuities is at most countable.
Jump functions
Examples. Let x1 < x2 < x3 < ⋅⋅⋅ be a countable subset of the compact interval [a,b] and let μ1, μ2, μ3, ... be a positive sequence with finite sum. Set
where χA denotes the characteristic function of a compact interval A. Then f is a non-decreasing function on [a,b], which is continuous except for jump discontinuities at xn for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions.[8][9]
More generally, the analysis of monotone functions has been studied by many mathematicians, starting from Abel, Jordan and Darboux. Following Riesz & Sz.-Nagy (1990), replacing a function by its negative if necessary, only the case of non-negative non-decreasing functions has to be considered. The domain [a,b] can be finite or have ∞ or −∞ as endpoints.
The main task is to construct monotone functions — generalising step functions — with discontinuities at a given denumerable set of points and with prescribed left and right discontinuities at each of these points.
Let xn (n ≥ 1) lie in (a, b) and take λ1, λ2, λ3, ... and μ1, μ2, μ3, ... non-negative with finite sum and with λn + μn > 0 for each n. Define
for for
Then the jump function, or saltus-function, defined by
Conversely, by a differentiation theorem of Lebesgue, the jump function f is uniquely determined by the properties:[14] (1) being non-decreasing and non-positive; (2) having given jump data at its points of discontinuity xn; (3) satisfying the boundary condition f(a) = 0; and (4) having zero derivative almost everywhere.
Proof that a jump function has zero derivative almost everywhere.
Property (4) can be checked following Riesz & Sz.-Nagy (1990), Rubel (1963) and Komornik (2016). Without loss of generality, it can be assumed that f is a non-negative jump function defined on the compact [a,b], with discontinuities only in (a,b).
Note that an open set U of (a,b) is canonically the disjoint union of at most countably many open intervals Im; that allows the total length to be computed ℓ(U)= Σ ℓ(Im). Recall that a null set A is a subset such that, for any arbitrarily small ε' > 0, there is an open U containing A with ℓ(U) < ε'. A crucial property of length is that, if U and V are open in (a,b), then ℓ(U) + ℓ(V) = ℓ(U ∪ V) + ℓ(U ∩ V).[15] It implies immediately that the union of two null sets is null; and that a finite or countable set is null.[16][17]
Proposition 1. For c > 0 and a normalised non-negative jump function f, let Uc(f) be the set of points x such that
for some s, t with s < x < t. Then
Uc(f) is open and has total length ℓ(Uc(f)) ≤ 4 c−1 (f(b) – f(a)).
Note that Uc(f) consists the points x where the slope of h is greater that c near x. By definition Uc(f) is an open subset of (a, b), so can be written as a disjoint union of at most countably many open intervals Ik = (ak, bk). Let Jk be an interval with closure in Ik and ℓ(Jk) = ℓ(Ik)/2. By compactness, there are finitely many open intervals of the form (s,t) covering the closure of Jk. On the other hand, it is elementary that, if three fixed bounded open intervals have a common point of intersection, then their union contains one of the three intervals: indeed just take the supremum and infimum points to identify the endpoints. As a result, the finite cover can be taken as adjacent open intervals (sk,1,tk,1), (sk,2,tk,2), ... only intersecting at consecutive intervals.[18] Hence
Proposition 2. If f is a jump function, then f '(x) = 0 almost everywhere.
To prove this, define
a variant of the Dini derivative of f. It will suffice to prove that for any fixed c > 0, the Dini derivative satisfies Df(x) ≤ calmost everywhere, i.e. on a null set.
Choose ε > 0, arbitrarily small. Starting from the definition of the jump function f = Σ fn, write f = g + h with g = Σn≤Nfn and h = Σn>Nfn where N ≥ 1. Thus g is a step function having only finitely many discontinuities at xn for n ≤ N and h is a non-negative jump function. It follows that Df = g' +Dh = Dh except at the N points of discontinuity of g. Choosing N sufficiently large so that Σn>N λn + μn < ε, it follows that h is a jump function such that h(b) − h(a) < ε and Dh ≤ c off an open set with length less than 4ε/c.
By construction Df ≤ c off an open set with length less than 4ε/c. Now set ε' = 4ε/c — then ε' and c are arbitrarily small and Df ≤ c off an open set of length less than ε'. Thus Df ≤ c almost everywhere. Since c could be taken arbitrarily small, Df and hence also f ' must vanish almost everywhere.[16][17]
As explained in Riesz & Sz.-Nagy (1990), every non-decreasing non-negative function F can be decomposed uniquely as a sum of a jump function f and a continuous monotone function g: the jump function f is constructed by using the jump data of the original monotone function F and it is easy to check that g = F − f is continuous and monotone.[10]
^So for instance, these intervals need not be pairwise disjoint nor is it required that they intersect only at endpoints. It is even possible that for all
Komornik, Vilmos (2016). "4. Monotone Functions". Lectures on functional analysis and the Lebesgue integral. Universitext. Springer-Verlag. pp. 151–164. ISBN978-1-4471-6810-2. MR3496354.
Nicolescu, M.; Dinculeanu, N.; Marcus, S. (1971), Analizǎ Matematică (in Romanian), vol. I (4th ed.), Bucharest: Editura Didactică şi Pedagogică, p. 783, MR0352352
Olmsted, John M. H. (1959), Real Variables: An Introduction to the Theory of Functions, The Appleton-Century Mathematics Series, New York: Appleton-Century-Crofts, Exercise 29, p. 59, MR0117304