In mathematics , the Dirichlet space on the domain
Ω
⊆
C
,
D
(
Ω
)
{\displaystyle \Omega \subseteq \mathbb {C} ,\,{\mathcal {D}}(\Omega )}
(named after Peter Gustav Lejeune Dirichlet ), is the reproducing kernel Hilbert space of holomorphic functions , contained within the Hardy space
H
2
(
Ω
)
{\displaystyle H^{2}(\Omega )}
, for which the Dirichlet integral , defined by
D
(
f
)
:=
1
π
∬
Ω
|
f
′
(
z
)
|
2
d
A
=
1
4
π
∬
Ω
|
∂
x
f
|
2
+
|
∂
y
f
|
2
d
x
d
y
{\displaystyle {\mathcal {D}}(f):={1 \over \pi }\iint _{\Omega }|f^{\prime }(z)|^{2}\,dA={1 \over 4\pi }\iint _{\Omega }|\partial _{x}f|^{2}+|\partial _{y}f|^{2}\,dx\,dy}
is finite (here dA denotes the area Lebesgue measure on the complex plane
C
{\displaystyle \mathbb {C} }
). The latter is the integral occurring in Dirichlet's principle for harmonic functions . The Dirichlet integral defines a seminorm on
D
(
Ω
)
{\displaystyle {\mathcal {D}}(\Omega )}
. It is not a norm in general, since
D
(
f
)
=
0
{\displaystyle {\mathcal {D}}(f)=0}
whenever f is a constant function .
For
f
,
g
∈
D
(
Ω
)
{\displaystyle f,\,g\in {\mathcal {D}}(\Omega )}
, we define
D
(
f
,
g
)
:=
1
π
∬
Ω
f
′
(
z
)
g
′
(
z
)
¯
d
A
(
z
)
.
{\displaystyle {\mathcal {D}}(f,\,g):={1 \over \pi }\iint _{\Omega }f'(z){\overline {g'(z)}}\,dA(z).}
This is a semi-inner product, and clearly
D
(
f
,
f
)
=
D
(
f
)
{\displaystyle {\mathcal {D}}(f,\,f)={\mathcal {D}}(f)}
. We may equip
D
(
Ω
)
{\displaystyle {\mathcal {D}}(\Omega )}
with an inner product given by
⟨
f
,
g
⟩
D
(
Ω
)
:=
⟨
f
,
g
⟩
H
2
(
Ω
)
+
D
(
f
,
g
)
(
f
,
g
∈
D
(
Ω
)
)
,
{\displaystyle \langle f,g\rangle _{{\mathcal {D}}(\Omega )}:=\langle f,\,g\rangle _{H^{2}(\Omega )}+{\mathcal {D}}(f,\,g)\;\;\;\;\;(f,\,g\in {\mathcal {D}}(\Omega )),}
where
⟨
⋅
,
⋅
⟩
H
2
(
Ω
)
{\displaystyle \langle \cdot ,\,\cdot \rangle _{H^{2}(\Omega )}}
is the usual inner product on
H
2
(
Ω
)
.
{\displaystyle H^{2}(\Omega ).}
The corresponding norm
‖
⋅
‖
D
(
Ω
)
{\displaystyle \|\cdot \|_{{\mathcal {D}}(\Omega )}}
is given by
‖
f
‖
D
(
Ω
)
2
:=
‖
f
‖
H
2
(
Ω
)
2
+
D
(
f
)
(
f
∈
D
(
Ω
)
)
.
{\displaystyle \|f\|_{{\mathcal {D}}(\Omega )}^{2}:=\|f\|_{H^{2}(\Omega )}^{2}+{\mathcal {D}}(f)\;\;\;\;\;(f\in {\mathcal {D}}(\Omega )).}
Note that this definition is not unique, another common choice is to take
‖
f
‖
2
=
|
f
(
c
)
|
2
+
D
(
f
)
{\displaystyle \|f\|^{2}=|f(c)|^{2}+{\mathcal {D}}(f)}
, for some fixed
c
∈
Ω
{\displaystyle c\in \Omega }
.
The Dirichlet space is not an algebra , but the space
D
(
Ω
)
∩
H
∞
(
Ω
)
{\displaystyle {\mathcal {D}}(\Omega )\cap H^{\infty }(\Omega )}
is a Banach algebra , with respect to the norm
‖
f
‖
D
(
Ω
)
∩
H
∞
(
Ω
)
:=
‖
f
‖
H
∞
(
Ω
)
+
D
(
f
)
1
/
2
(
f
∈
D
(
Ω
)
∩
H
∞
(
Ω
)
)
.
{\displaystyle \|f\|_{{\mathcal {D}}(\Omega )\cap H^{\infty }(\Omega )}:=\|f\|_{H^{\infty }(\Omega )}+{\mathcal {D}}(f)^{1/2}\;\;\;\;\;(f\in {\mathcal {D}}(\Omega )\cap H^{\infty }(\Omega )).}
We usually have
Ω
=
D
{\displaystyle \Omega =\mathbb {D} }
(the unit disk of the complex plane
C
{\displaystyle \mathbb {C} }
), in that case
D
(
D
)
:=
D
{\displaystyle {\mathcal {D}}(\mathbb {D} ):={\mathcal {D}}}
, and if
f
(
z
)
=
∑
n
≥
0
a
n
z
n
(
f
∈
D
)
,
{\displaystyle f(z)=\sum _{n\geq 0}a_{n}z^{n}\;\;\;\;\;(f\in {\mathcal {D}}),}
then
D
(
f
)
=
∑
n
≥
1
n
|
a
n
|
2
,
{\displaystyle D(f)=\sum _{n\geq 1}n|a_{n}|^{2},}
and
‖
f
‖
D
2
=
∑
n
≥
0
(
n
+
1
)
|
a
n
|
2
.
{\displaystyle \|f\|_{\mathcal {D}}^{2}=\sum _{n\geq 0}(n+1)|a_{n}|^{2}.}
Clearly,
D
{\displaystyle {\mathcal {D}}}
contains all the polynomials and, more generally, all functions
f
{\displaystyle f}
, holomorphic on
D
{\displaystyle \mathbb {D} }
such that
f
′
{\displaystyle f'}
is bounded on
D
{\displaystyle \mathbb {D} }
.
The reproducing kernel of
D
{\displaystyle {\mathcal {D}}}
at
w
∈
C
∖
{
0
}
{\displaystyle w\in \mathbb {C} \setminus \{0\}}
is given by
k
w
(
z
)
=
1
z
w
¯
log
(
1
1
−
z
w
¯
)
(
z
∈
C
∖
{
0
}
)
.
{\displaystyle k_{w}(z)={\frac {1}{z{\overline {w}}}}\log \left({\frac {1}{1-z{\overline {w}}}}\right)\;\;\;\;\;(z\in \mathbb {C} \setminus \{0\}).}
See also
References
Arcozzi, Nicola; Rochberg, Richard; Sawyer, Eric T.; Wick, Brett D. (2011), "The Dirichlet space: a survey" (PDF) , New York J. Math. , 17a : 45– 86
El-Fallah, Omar; Kellay, Karim; Mashreghi, Javad; Ransford, Thomas (2014). A primer on the Dirichlet space . Cambridge, UK: Cambridge University Press. ISBN 978-1-107-04752-5 .