Let be the set of natural numbers. A first-ordertheory in the language of arithmetic represents[3] the computable function if there exists a "graph" formula in the language of — that is, a formula such that for each
.
Here is the numeral corresponding to the natural number , which is defined to be the th successor of presumed first numeral in .
The diagonal lemma also requires a systematic way of assigning to every formula a natural number (also written as ) called its Gödel number. Formulas can then be represented within by the numerals corresponding to their Gödel numbers. For example, is represented by
The diagonal lemma applies to theories capable of representing all primitive recursive functions. Such theories include first-order Peano arithmetic and the weaker Robinson arithmetic, and even to a much weaker theory known as R. A common statement of the lemma (as given below) makes the stronger assumption that the theory can represent all computable functions, but all the theories mentioned have that capacity, as well.
Statement of the lemma
Lemma[4] — Let be a first-order theory in the language of arithmetic and capable of representing all computable functions, and be a formula in with one free variable. Then there exists a sentence such that
Intuitively, is a self-referential sentence: says that has the property . The sentence can also be viewed as a fixed point of the operation that assigns, to the equivalence class of a given sentence , the equivalence class of the sentence (a sentence's equivalence class is the set of all sentences to which it is provably equivalent in the theory ). The sentence constructed in the proof is not literally the same as , but is provably equivalent to it in the theory .
Proof
Let be the function defined by:
for each formula with only one free variable in theory , and otherwise. Here denotes the Gödel number of formula . The function is computable (which is ultimately an assumption about the Gödel numbering scheme), so there is a formula representing in . Namely
which is to say
Now, given an arbitrary formula with one free variable , define the formula as:
Then, for all formulas with one free variable:
which is to say
Now substitute with , and define the sentence as:
Then the previous line can be rewritten as
which is the desired result.
(The same argument in different terms is given in [Raatikainen (2015a)].)
Rudolf Carnap (1934) was the first to prove the general self-referential lemma,[6] which says that for any formula F in a theory T satisfying certain conditions, there exists a formula ψ such that ψ ↔ F(°#(ψ)) is provable in T. Carnap's work was phrased in alternate language, as the concept of computable functions was not yet developed in 1934. Mendelson (1997, p. 204) believes that Carnap was the first to state that something like the diagonal lemma was implicit in Gödel's reasoning. Gödel was aware of Carnap's work by 1937.[7]
^Hájek, Petr; Pudlák, Pavel (1998) [first printing 1993]. Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic (1st ed.). Springer. ISBN3-540-63648-X. ISSN0172-6641. In modern texts these results are proved using the well-known diagonalization (or self-reference) lemma, which is already implicit in Gödel's proof.
^See Boolos and Jeffrey (2002, sec. 15) and Mendelson (1997, Prop. 3.37 and Cor. 3.44 ).
^For details on representability, see Hinman 2005, p. 316
^Smullyan (1991, 1994) are standard specialized references. The lemma is Prop. 3.34 in Mendelson (1997), and is covered in many texts on basic mathematical logic, such as Boolos and Jeffrey (1989, sec. 15) and Hinman (2005).