Mod 2 invariant of (4k+1)-dimensional manifold
In geometric topology , the de Rham invariant is a mod 2 invariant of a (4k +1)-dimensional manifold, that is, an element of
Z
/
2
{\displaystyle \mathbf {Z} /2}
– either 0 or 1. It can be thought of as the simply-connected symmetric L-group
L
4
k
+
1
,
{\displaystyle L^{4k+1},}
and thus analogous to the other invariants from L-theory: the signature , a 4k -dimensional invariant (either symmetric or quadratic,
L
4
k
≅
L
4
k
{\displaystyle L^{4k}\cong L_{4k}}
), and the Kervaire invariant , a (4k +2)-dimensional quadratic invariant
L
4
k
+
2
.
{\displaystyle L_{4k+2}.}
It is named for Swiss mathematician Georges de Rham , and used in surgery theory .[ 1] [ 2]
Definition
The de Rham invariant of a (4k +1)-dimensional manifold can be defined in various equivalent ways:[ 3]
the rank of the 2-torsion in
H
2
k
(
M
)
,
{\displaystyle H_{2k}(M),}
as an integer mod 2;
the Stiefel–Whitney number
w
2
w
4
k
−
1
{\displaystyle w_{2}w_{4k-1}}
;
the (squared) Wu number,
v
2
k
S
q
1
v
2
k
,
{\displaystyle v_{2k}Sq^{1}v_{2k},}
where
v
2
k
∈
H
2
k
(
M
;
Z
2
)
{\displaystyle v_{2k}\in H^{2k}(M;Z_{2})}
is the Wu class of the normal bundle of
M
{\displaystyle M}
and
S
q
1
{\displaystyle Sq^{1}}
is the Steenrod square ; formally, as with all characteristic numbers , this is evaluated on the fundamental class :
(
v
2
k
S
q
1
v
2
k
,
[
M
]
)
{\displaystyle (v_{2k}Sq^{1}v_{2k},[M])}
;
in terms of a semicharacteristic .
References
^ Morgan, John W ; Sullivan, Dennis P. (1974), "The transversality characteristic class and linking cycles in surgery theory", Annals of Mathematics , 2, 99 (3): 463– 544, doi :10.2307/1971060 , JSTOR 1971060 , MR 0350748
^ John W. Morgan, A product formula for surgery obstructions , 1978
^ (Lusztig, Milnor & Peterson 1969 )
Lusztig, George ; Milnor, John ; Peterson, Franklin P. (1969), "Semi-characteristics and cobordism", Topology , 8 (4): 357– 360, doi :10.1016/0040-9383(69)90021-4 , MR 0246308
Chess, Daniel, A Poincaré-Hopf type theorem for the de Rham invariant , 1980