In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real numberx and integern it is the case that
where i is the imaginary unit (i2 = −1). The formula is named after Abraham de Moivre,[1] although he never stated it in his works.[2] The expression cos x + i sin x is sometimes abbreviated to cisx.
The formula is important because it connects complex numbers and trigonometry. By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos nx and sin nx in terms of cos x and sin x.
As written, the formula is not valid for non-integer powers n. However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the nth roots of unity, that is, complex numbersz such that zn = 1.
Using the standard extensions of the sine and cosine functions to complex numbers, the formula is valid even when x is an arbitrary complex number.
Example
For and , de Moivre's formula asserts that
or equivalently that
In this example, it is easy to check the validity of the equation by multiplying out the left side.
Relation to Euler's formula
De Moivre's formula is a precursor to Euler's formula
with x expressed in radians rather than degrees, which establishes the fundamental relationship between the trigonometric functions and the complex exponential function.
One can derive de Moivre's formula using Euler's formula and the exponential law for integer powers
since Euler's formula implies that the left side is equal to while the right side is equal to
Proof by induction
The truth of de Moivre's theorem can be established by using mathematical induction for natural numbers, and extended to all integers from there. For an integer n, call the following statement S(n):
For n > 0, we proceed by mathematical induction. S(1) is clearly true. For our hypothesis, we assume S(k) is true for some natural k. That is, we assume
We deduce that S(k) implies S(k + 1). By the principle of mathematical induction it follows that the result is true for all natural numbers. Now, S(0) is clearly true since cos(0x) + i sin(0x) = 1 + 0i = 1. Finally, for the negative integer cases, we consider an exponent of −n for natural n.
The equation (*) is a result of the identity
for z = cos nx + i sin nx. Hence, S(n) holds for all integers n.
For an equality of complex numbers, one necessarily has equality both of the real parts and of the imaginary parts of both members of the equation. If x, and therefore also cos x and sin x, are real numbers, then the identity of these parts can be written using binomial coefficients. This formula was given by 16th century French mathematician François Viète:
In each of these two equations, the final trigonometric function equals one or minus one or zero, thus removing half the entries in each of the sums. These equations are in fact valid even for complex values of x, because both sides are entire (that is, holomorphic on the whole complex plane) functions of x, and two such functions that coincide on the real axis necessarily coincide everywhere. Here are the concrete instances of these equations for n = 2 and n = 3:
The right-hand side of the formula for cos nx is in fact the value Tn(cos x) of the Chebyshev polynomialTn at cos x.
Failure for non-integer powers, and generalization
De Moivre's formula does not hold for non-integer powers. The derivation of de Moivre's formula above involves a complex number raised to the integer power n. If a complex number is raised to a non-integer power, the result is multiple-valued (see failure of power and logarithm identities).
Roots of complex numbers
A modest extension of the version of de Moivre's formula given in this article can be used to find the n-th roots of a complex number for a non-zero integer n. (This is equivalent to raising to a power of 1 / n).
If z is a complex number, written in polar form as
then the n-th roots of z are given by
where k varies over the integer values from 0 to |n| − 1.
This formula is also sometimes known as de Moivre's formula.[3]
Complex numbers raised to an arbitrary power
Generally, if (in polar form) and w are arbitrary complex numbers, then the set of possible values is
(Note that if w is a rational number that equals p / q in lowest terms then this set will have exactly q distinct values rather than infinitely many. In particular, if w is an integer then the set will have exactly one value, as previously discussed.) In contrast, de Moivre's formula gives
which is just the single value from this set corresponding to k = 0.
Analogues in other settings
Hyperbolic trigonometry
Since cosh x + sinh x = ex, an analog to de Moivre's formula also applies to the hyperbolic trigonometry. For all integersn,
If n is a rational number (but not necessarily an integer), then cosh nx + sinh nx will be one of the values of (cosh x + sinh x)n.[4]
Extension to complex numbers
For any integer n, the formula holds for any complex number
where
Quaternions
To find the roots of a quaternion there is an analogous form of de Moivre's formula. A quaternion in the form
can be represented in the form
In this representation,
and the trigonometric functions are defined as
In the case that a2 + b2 + c2 ≠ 0,
that is, the unit vector. This leads to the variation of De Moivre's formula:
^Moivre, Ab. de (1707). "Aequationum quarundam potestatis tertiae, quintae, septimae, nonae, & superiorum, ad infinitum usque pergendo, in termimis finitis, ad instar regularum pro cubicis quae vocantur Cardani, resolutio analytica" [Of certain equations of the third, fifth, seventh, ninth, & higher power, all the way to infinity, by proceeding, in finite terms, in the form of rules for cubics which are called by Cardano, resolution by analysis.]. Philosophical Transactions of the Royal Society of London (in Latin). 25 (309): 2368–2371. doi:10.1098/rstl.1706.0037. S2CID186209627.
English translation by Richard J. Pulskamp (2009)
On p. 2370 de Moivre stated that if a series has the form , where n is any given odd integer (positive or negative) and where y and a can be functions, then upon solving for y, the result is equation (2) on the same page: . If y = cos x and a = cos nx , then the result is
In 1676, Isaac Newton found the relation between two chords that were in the ratio of n to 1; the relation was expressed by the series above. The series appears in a letter — Epistola prior D. Issaci Newton, Mathescos Professoris in Celeberrima Academia Cantabrigiensi; … — of 13 June 1676 from Isaac Newton to Henry Oldenburg, secretary of the Royal Society; a copy of the letter was sent to Gottfried Wilhelm Leibniz. See p. 106 of: Biot, J.-B.; Lefort, F., eds. (1856). Commercium epistolicum J. Collins et aliorum de analysi promota, etc: ou … (in Latin). Paris, France: Mallet-Bachelier. pp. 102–112.
In 1730, de Moivre explicitly considered the case where the functions are cos θ and cos nθ. See: Moivre, A. de (1730). Miscellanea Analytica de Seriebus et Quadraturis (in Latin). London, England: J. Tonson & J. Watts. p. 1. From p. 1: "Lemma 1. Si sint l & x cosinus arcuum duorum A & B, quorum uterque eodem radio 1 describatur, quorumque prior sit posterioris multiplex in ea ratione quam habet numerus n ad unitatem, tunc erit ." (If l and x are cosines of two arcs A and B both of which are described by the same radius 1 and of which the former is a multiple of the latter in that ratio as the number n has to 1, then it will be [true that] .) So if arc A = n × arc B, then l = cos A = cos nB and x = cos B. Hence
See also:
Cantor, Moritz (1898). Vorlesungen über Geschichte der Mathematik [Lectures on the History of Mathematics]. Bibliotheca mathematica Teuberiana, Bd. 8-9 (in German). Vol. 3. Leipzig, Germany: B.G. Teubner. p. 624.
^Lial, Margaret L.; Hornsby, John; Schneider, David I.; Callie J., Daniels (2008). College Algebra and Trigonometry (4th ed.). Boston: Pearson/Addison Wesley. p. 792. ISBN9780321497444.