Mathematical solution
In mathematics , and specifically partial differential equations (PDEs), d´Alembert's formula is the general solution to the one-dimensional wave equation :
u
t
t
−
c
2
u
x
x
=
0
,
u
(
x
,
0
)
=
g
(
x
)
,
u
t
(
x
,
0
)
=
h
(
x
)
,
{\displaystyle u_{tt}-c^{2}u_{xx}=0,\,u(x,0)=g(x),\,u_{t}(x,0)=h(x),}
for
−
∞
<
x
<
∞
,
t
>
0
{\displaystyle -\infty <x<\infty ,\,\,t>0}
It is named after the mathematician Jean le Rond d'Alembert , who derived it in 1747 as a solution to the problem of a vibrating string .[ 1]
Details
The characteristics of the PDE are
x
±
c
t
=
c
o
n
s
t
{\displaystyle x\pm ct=\mathrm {const} }
(where
±
{\displaystyle \pm }
sign states the two solutions to quadratic equation), so we can use the change of variables
μ
=
x
+
c
t
{\displaystyle \mu =x+ct}
(for the positive solution) and
η
=
x
−
c
t
{\displaystyle \eta =x-ct}
(for the negative solution) to transform the PDE to
u
μ
η
=
0
{\displaystyle u_{\mu \eta }=0}
. The general solution of this PDE is
u
(
μ
,
η
)
=
F
(
μ
)
+
G
(
η
)
{\displaystyle u(\mu ,\eta )=F(\mu )+G(\eta )}
where
F
{\displaystyle F}
and
G
{\displaystyle G}
are
C
1
{\displaystyle C^{1}}
functions. Back in
x
,
t
{\displaystyle x,t}
coordinates,
u
(
x
,
t
)
=
F
(
x
+
c
t
)
+
G
(
x
−
c
t
)
{\displaystyle u(x,t)=F(x+ct)+G(x-ct)}
u
{\displaystyle u}
is
C
2
{\displaystyle C^{2}}
if
F
{\displaystyle F}
and
G
{\displaystyle G}
are
C
2
{\displaystyle C^{2}}
.
This solution
u
{\displaystyle u}
can be interpreted as two waves with constant velocity
c
{\displaystyle c}
moving in opposite directions along the x-axis.
Now consider this solution with the Cauchy data
u
(
x
,
0
)
=
g
(
x
)
,
u
t
(
x
,
0
)
=
h
(
x
)
{\displaystyle u(x,0)=g(x),u_{t}(x,0)=h(x)}
.
Using
u
(
x
,
0
)
=
g
(
x
)
{\displaystyle u(x,0)=g(x)}
we get
F
(
x
)
+
G
(
x
)
=
g
(
x
)
{\displaystyle F(x)+G(x)=g(x)}
.
Using
u
t
(
x
,
0
)
=
h
(
x
)
{\displaystyle u_{t}(x,0)=h(x)}
we get
c
F
′
(
x
)
−
c
G
′
(
x
)
=
h
(
x
)
{\displaystyle cF'(x)-cG'(x)=h(x)}
.
We can integrate the last equation to get
c
F
(
x
)
−
c
G
(
x
)
=
∫
−
∞
x
h
(
ξ
)
d
ξ
+
c
1
.
{\displaystyle cF(x)-cG(x)=\int _{-\infty }^{x}h(\xi )\,d\xi +c_{1}.}
Now we can solve this system of equations to get
F
(
x
)
=
−
1
2
c
(
−
c
g
(
x
)
−
(
∫
−
∞
x
h
(
ξ
)
d
ξ
+
c
1
)
)
{\displaystyle F(x)={\frac {-1}{2c}}\left(-cg(x)-\left(\int _{-\infty }^{x}h(\xi )\,d\xi +c_{1}\right)\right)}
G
(
x
)
=
−
1
2
c
(
−
c
g
(
x
)
+
(
∫
−
∞
x
h
(
ξ
)
d
ξ
+
c
1
)
)
.
{\displaystyle G(x)={\frac {-1}{2c}}\left(-cg(x)+\left(\int _{-\infty }^{x}h(\xi )d\xi +c_{1}\right)\right).}
Now, using
u
(
x
,
t
)
=
F
(
x
+
c
t
)
+
G
(
x
−
c
t
)
{\displaystyle u(x,t)=F(x+ct)+G(x-ct)}
d'Alembert's formula becomes:[ 2]
u
(
x
,
t
)
=
1
2
[
g
(
x
−
c
t
)
+
g
(
x
+
c
t
)
]
+
1
2
c
∫
x
−
c
t
x
+
c
t
h
(
ξ
)
d
ξ
.
{\displaystyle u(x,t)={\frac {1}{2}}\left[g(x-ct)+g(x+ct)\right]+{\frac {1}{2c}}\int _{x-ct}^{x+ct}h(\xi )\,d\xi .}
Generalization for inhomogeneous canonical hyperbolic differential equations
The general form of an inhomogeneous canonical hyperbolic type differential equation takes the form of:
u
t
t
−
c
2
u
x
x
=
f
(
x
,
t
)
,
u
(
x
,
0
)
=
g
(
x
)
,
u
t
(
x
,
0
)
=
h
(
x
)
,
{\displaystyle u_{tt}-c^{2}u_{xx}=f(x,t),\,u(x,0)=g(x),\,u_{t}(x,0)=h(x),}
for
−
∞
<
x
<
∞
,
t
>
0
,
f
∈
C
2
(
R
2
,
R
)
{\displaystyle -\infty <x<\infty ,\,\,t>0,f\in C^{2}(\mathbb {R} ^{2},\mathbb {R} )}
.
All second order differential equations with constant coefficients can be transformed into their respective canonic forms . This equation is one of these three cases: Elliptic partial differential equation , Parabolic partial differential equation and Hyperbolic partial differential equation .
The only difference between a homogeneous and an inhomogeneous (partial) differential equation is that in the homogeneous form we only allow 0 to stand on the right side (
f
(
x
,
t
)
=
0
{\displaystyle f(x,t)=0}
), while the inhomogeneous one is much more general, as in
f
(
x
,
t
)
{\displaystyle f(x,t)}
could be any function as long as it's continuous and can be continuously differentiated twice.
The solution of the above equation is given by the formula:
u
(
x
,
t
)
=
1
2
(
g
(
x
+
c
t
)
+
g
(
x
−
c
t
)
)
+
1
2
c
∫
x
−
c
t
x
+
c
t
h
(
s
)
d
s
+
1
2
c
∫
0
t
∫
x
−
c
(
t
−
τ
)
x
+
c
(
t
−
τ
)
f
(
s
,
τ
)
d
s
d
τ
.
{\displaystyle u(x,t)={\frac {1}{2}}{\bigl (}g(x+ct)+g(x-ct){\bigr )}+{\frac {1}{2c}}\int _{x-ct}^{x+ct}h(s)\,ds+{\frac {1}{2c}}\int _{0}^{t}\int _{x-c(t-\tau )}^{x+c(t-\tau )}f(s,\tau )\,ds\,d\tau .}
If
g
(
x
)
=
0
{\displaystyle g(x)=0}
, the first part disappears, if
h
(
x
)
=
0
{\displaystyle h(x)=0}
, the second part disappears, and if
f
(
x
)
=
0
{\displaystyle f(x)=0}
, the third part disappears from the solution, since integrating the 0-function between any two bounds always results in 0.
See also
Notes
^ D'Alembert (1747) "Recherches sur la courbe que forme une corde tenduë mise en vibration" (Researches on the curve that a tense cord [string] forms [when] set into vibration), Histoire de l'académie royale des sciences et belles lettres de Berlin , vol. 3, pages 214-219. See also: D'Alembert (1747) "Suite des recherches sur la courbe que forme une corde tenduë mise en vibration" (Further researches on the curve that a tense cord forms [when] set into vibration), Histoire de l'académie royale des sciences et belles lettres de Berlin , vol. 3, pages 220-249. See also: D'Alembert (1750) "Addition au mémoire sur la courbe que forme une corde tenduë mise en vibration," Histoire de l'académie royale des sciences et belles lettres de Berlin , vol. 6, pages 355-360.
^ Pinchover, Yehuda; Rubinstein, Jacob (2013). An introduction to Partial Differential Equations (8th printing). Cambridge University Press. pp. 76– 92. ISBN 978-0-521-84886-2 .
External links
https://www.knowledgeablegroup.com/2020/09/equations%20change%20world.html [permanent dead link ]